Stereoscopy is the production of the illusion of depth in a photograph, movie, or other two-dimensional image by the presentation of a slightly different image to each eye, which adds the first of these cues (stereopsis). The two images are then combined in the brain to give the perception of depth. Because all points in the image produced by stereoscopy focus at the same plane regardless of their depth in the original scene, the second cue, focus, is not duplicated and therefore the illusion of depth is incomplete. There are also mainly two effects of stereoscopy that are unnatural for human vision: (1) the mismatch between convergence and accommodation, caused by the difference between an object's perceived position in front of or behind the display or screen and the real origin of that light; and (2) possible crosstalk between the eyes, caused by imperfect image separation in some methods of stereoscopy.
Although the term "3D" is ubiquitously used, the presentation of dual 2D images is distinctly different from displaying an image in three full dimensions. The most notable difference is that, in the case of "3D" displays, the observer's head and eye movement do not change the information received about the 3-dimensional objects being viewed. Holographic displays and volumetric display do not have this limitation. Just as it is not possible to recreate a full 3-dimensional sound field with just two stereophonic speakers, it is an overstatement to call dual 2D images "3D". The accurate term "stereoscopic" is more cumbersome than the common misnomer "3D", which has been entrenched by many decades of unquestioned misuse. Although most stereoscopic displays do not qualify as real 3D display, all real 3D displays are also stereoscopic displays because they meet the lower criteria also.
Most 3D displays use this stereoscopic method to convey images. It was first invented by Sir Charles Wheatstone in 1838,[8][9]and improved by Sir David Brewster who made the first portable 3D viewing device.[10]
Wheatstone originally used his stereoscope (a rather bulky device)[11] with drawings because photography was not yet available, yet his original paper seems to foresee the development of a realistic imaging method:[12]
Stereoscopy is used in photogrammetry and also for entertainment through the production of stereograms. Stereoscopy is useful in viewing images rendered from large multi-dimensional data sets such as are produced by experimental data. Modern industrial three-dimensional photography may use 3D scanners to detect and record three-dimensional information.[13] The three-dimensional depth information can be reconstructed from two images using a computer by correlating the pixels in the left and right images.[14] Solving the Correspondence problem in the field of Computer Vision aims to create meaningful depth information from two images.
These functions develop in early childhood. Some people who have strabismus disrupt the development of stereopsis, however orthoptics treatment can be used to improve binocular vision. A person's stereoacuity[15] determines the minimum image disparity they can perceive as depth. It is believed that approximately 12% of people are unable to properly see 3D images, due to a variety of medical conditions.[16][17] According to another experiment up to 30% of people have very weak stereoscopic vision preventing them from depth perception based on stereo disparity. This nullifies or greatly decreases immersion effects of stereo to them.[18]
Stereoscopic viewing may be artificially created by the viewer's brain, as demonstrated with the Van Hare Effect, where the brain perceives stereo images even when the paired photographs are identical. This "false dimensionality" results from the developed stereoacuity in the brain, allowing the viewer to fill in depth information even when few if any 3D cues are actually available in the paired images.
Traditional stereoscopic photography consists of creating a 3D illusion starting from a pair of 2D images, a stereogram. The easiest way to enhance depth perception in the brain is to provide the eyes of the viewer with two different images, representing two perspectives of the same object, with a minor deviation equal or nearly equal to the perspectives that both eyes naturally receive in binocular vision.
To avoid eyestrain and distortion, each of the two 2D images should be presented to the viewer so that any object at infinite distance is perceived by the eye as being straight ahead, the viewer's eyes being neither crossed nor diverging. When the picture contains no object at infinite distance, such as a horizon or a cloud, the pictures should be spaced correspondingly closer together.
The advantages of side-by-side viewers is the lack of diminution of brightness, allowing the presentation of images at very high resolution and in full spectrum color, simplicity in creation, and little or no additional image processing is required. Under some circumstances, such as when a pair of images is presented for freeviewing, no device or additional optical equipment is needed.
Prismatic, self-masking glasses are now being used by some cross-eyed-view advocates. These reduce the degree of convergence required and allow large images to be displayed. However, any viewing aid that uses prisms, mirrors or lenses to assist fusion or focus is simply a type of stereoscope, excluded by the customary definition of freeviewing.
Stereoscopically fusing two separate images without the aid of mirrors or prisms while simultaneously keeping them in sharp focus without the aid of suitable viewing lenses inevitably requires an unnatural combination of eye vergence and accommodation. Simple freeviewing therefore cannot accurately reproduce the physiological depth cues of the real-world viewing experience. Different individuals may experience differing degrees of ease and comfort in achieving fusion and good focus, as well as differing tendencies to eye fatigue or strain.
An autostereogram is a single-image stereogram (SIS), designed to create the visual illusion of a three-dimensional (3D) scene within the human brain from an external two-dimensional image. In order to perceive 3D shapes in these autostereograms, one must overcome the normally automatic coordination between focusing and vergence.
The stereoscope is essentially an instrument in which two photographs of the same object, taken from slightly different angles, are simultaneously presented, one to each eye. A simple stereoscope is limited in the size of the image that may be used. A more complex stereoscope uses a pair of horizontal periscope-like devices, allowing the use of larger images that can present more detailed information in a wider field of view. One can buy historical stereoscopes such as Holmes stereoscopes as antiques.
Some stereoscopes are designed for viewing transparent photographs on film or glass, known as transparencies or diapositives and commonly called slides. Some of the earliest stereoscope views, issued in the 1850s, were on glass. In the early 20th century, 45x107 mm and 6x13 cm glass slides were common formats for amateur stereo photography, especially in Europe. In later years, several film-based formats were in use. The best-known formats for commercially issued stereo views on film are Tru-Vue, introduced in 1931, and View-Master, introduced in 1939 and still in production. For amateur stereo slides, the Stereo Realist format, introduced in 1947, is by far the most common.
The user typically wears a helmet or glasses with two small LCD or OLED displays with magnifying lenses, one for each eye. The technology can be used to show stereo films, images or games, but it can also be used to create a virtual display. Head-mounted displays may also be coupled with head-tracking devices, allowing the user to "look around" the virtual world by moving their head, eliminating the need for a separate controller. Performing this update quickly enough to avoid inducing nausea in the user requires a great amount of computer image processing. If six axis position sensing (direction and position) is used then wearer may move about within the limitations of the equipment used. Owing to rapid advancements in computer graphics and the continuing miniaturization of video and other equipment these devices are beginning to become available at more reasonable cost.
Head-mounted or wearable glasses may be used to view a see-through image imposed upon the real world view, creating what is called augmented reality. This is done by reflecting the video images through partially reflective mirrors. The real world view is seen through the mirrors' reflective surface. Experimental systems have been used for gaming, where virtual opponents may peek from real windows as a player moves about. This type of system is expected to have wide application in the maintenance of complex systems, as it can give a technician what is effectively "x-ray vision" by combining computer graphics rendering of hidden elements with the technician's natural vision. Additionally, technical data and schematic diagrams may be delivered to this same equipment, eliminating the need to obtain and carry bulky paper documents.
de7ca951e2