Kurzgesagt – In a Nutshell 

Sources – Timeline


We thank the following expert for advice on some visual and content decisions:


Professor of Geobiology / Research School of Earth Sciences, 

The Australian National University

DISCLAIMER: 1 second in the video covers around 1.5 million years, so we had to compress and simplify a couple things to create a smooth viewing experience. The aim of this video is not to provide an encyclopedic overview over events in Earth's history, but to give you a more intuitive impression about how much our planet has changed and how much it has already seen before we humans even entered the stage.



Hadean 4.5 - 4 Ga


Early Earth in Hadean and Archean


Roerdink, D. et al (2020): The emergence of subaerial crust and onset of weathering 3.7 billion years ago

https://www.researchgate.net/publication/346816672_The_emergence_of_subaerial_crust_and_onset_of_weathering_37_billion_years_ago 


Wilde, S.A. et al (2001): Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago. Nature, Vol. 409

http://www.geology.wisc.edu/~valley/zircons/Wilde2001Nature.pdf 


Elkins-Tanton, L.T. (2011): Formation of early water oceans on rocky planets. Astrophysics and Space Science, Vol. 332 

https://link.springer.com/article/10.1007/s10509-010-0535-3 


Catling, D.C. & Zahnle, K.J. (2020): The Archean atmosphere. Science Advances, Vol. 6 (9)

https://www.science.org/doi/10.1126/sciadv.aax1420#sec-2 


Theia


NASA (2022): Collision May Have Formed the Moon in Mere Hours, Simulations Reveal

https://www.nasa.gov/feature/ames/lunar-origins-simulations 


Canup, R. M. et al. (2021): Origin of the Moon. 

https://arxiv.org/abs/2103.02045


Late Heavy Bombardment


Worsham, E. A. & Kleine, T. (2021): Late accretionary history of Earth and Moon preserved in lunar impactites

https://www.science.org/doi/10.1126/sciadv.abh2837



Eoarchean 4 - 3.6 Ga


Catling, D.C. & Zahnle, K.J. (2020): The Archean atmosphere. Science Advances, Vol. 6 (9)

https://www.science.org/doi/10.1126/sciadv.aax1420#sec-2 


Dong, Junjie et al. (2021): Constraining the Volume of Earth's Early Oceans With a Temperature-Dependent Mantle Water Storage Capacity Model. AGU Advances, Vol. 2 (1)

https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2020AV000323 


Early life


Knoll, A. H. & Nowak, M. A. (2017): The timetable of evolution. Science advances, Vol. 3 (5)

https://www.science.org/doi/10.1126/sciadv.1603076


Caliari, A. et al. (2021): The requirement of cellularity for abiogenesis. Computational and Structural Biotechnology Journal, Vol. 19

https://www.sciencedirect.com/science/article/pii/S2001037021001422#s0015 


Lepot, K. (2020): Signatures of early microbial life from the Archean (4 to 2.5 Ga) eon. Earth-Science Reviews, Vol. 209

https://www.sciencedirect.com/science/article/pii/S0012825220303421 


Javaux, E.J. (2019): Challenges in evidencing the earliest traces of life. Nature, Vol. 572

https://www.nature.com/articles/s41586-019-1436-4 


Hydrothermal vents


NASA (2020): Simulating Early Ocean Vents Shows Life’s Building Blocks Form Under Pressure

https://www.nasa.gov/science-research/earth-science/simulating-early-ocean-vents-shows-lifes-building-blocks-form-under-pressure/ 


Lepot, K. (2020): Signatures of early microbial life from the Archean (4 to 2.5 Ga) eon. Earth-Science Reviews, Vol. 209

https://www.sciencedirect.com/science/article/pii/S0012825220303421 


Ebisuzaki, T. & Maruyama, S. (2017): Nuclear geyser model of the origin of life: Driving force to promote the synthesis of building blocks of life. Geoscience Frontiers, Vol. 8 (2)

https://www.sciencedirect.com/science/article/pii/S1674987116301360



Paleoarchean 3.6 - 3.2 Ga


Stromatolites and photosynthesis


Hickman-Lewis, K. (2023): Advanced two- and three-dimensional insights into Earth's oldest stromatolites (ca. 3.5 Ga): Prospects for the search for life on Mars. Geology, Vol. 51 (1)

https://pubs.geoscienceworld.org/gsa/geology/article/51/1/33/618747/Advanced-two-and-three-dimensional-insights-into 


Allwood, A. C. et al. (2006): Stromatolite reef from the Early Archaean era of Australia. Nature, Vol. 441

https://www.nature.com/articles/nature04764 


Javaux, J. E. (2019): Challenges in evidencing the earliest traces of life. Nature, Vol. 572

https://www.nature.com/articles/s41586-019-1436-4 


Plate tectonics and coverage of oceans 


Mitchell, R.N. & Jing, X. (2022): Paleoarchean plate motion: Not so fast. PNAS, Vol. 120 (1)

https://www.pnas.org/doi/abs/10.1073/pnas.2218383120


Bradley, K. et al. (2015): Records of geomagnetism, climate, and tectonics across a Paleoarchean erosion surface. Earth and Planetary Science Letters, Vol. 419

https://www.sciencedirect.com/science/article/abs/pii/S0012821X15001454


Wang, W. et al. (2021): Global-scale emergence of continental crust during the Mesoarchean–early Neoarchean. Geology, Vol. 50 (2)

https://pubs.geoscienceworld.org/gsa/geology/article-abstract/50/2/184/609543/Global-scale-emergence-of-continental-crust-during


Brenner, A.R. et al. (2020):  Paleomagnetic evidence for modern-like plate motion velocities at 3.2 Ga. Science Advances, Vol. 6 (17)

https://www.science.org/doi/10.1126/sciadv.aaz8670


Length of day and Earth’s spin


Denis, C. et al. (2002): Despinning of the earth rotation in the geological past and geomagnetic paleointensities. Journal of Geodynamics, Vol. 34 (5)

https://www.sciencedirect.com/science/article/abs/pii/S0264370702000492?via%3Dihub



Mesoarchean 3.2 - 2.8 Ga


van Hunen, J. & Moyen, J.-F. (2012): Archean Subduction: Fact or Fiction? Annual Review of Earth and Planetary Sciences, Vol. 40 

https://www.annualreviews.org/doi/abs/10.1146/annurev-earth-042711-105255#:~:text=Combined%20geodynamical%20and%20geochemical%20evidence,motion%20than%20in%20the%20Phanerozoic


Smithies, R.H. et al. (2007): The Mesoarchean emergence of modern-style subduction. Gondwana Research, Vol. 11 (1-2)

https://www.sciencedirect.com/science/article/abs/pii/S1342937X06000669 


Atmosphere and temperature


Catling, D.C. & Zahnle, K.J. (2020): The Archean Atmosphere. Science Advances, Vol. 6 (9)

https://www.science.org/doi/10.1126/sciadv.aax1420


Guy, B.M. et al. (2012): A multiple sulfur and organic carbon isotope record from non-conglomeratic sedimentary rocks of the Mesoarchean Witwatersrand Supergroup, South Africa. Precambrian Research, Vol. 216–219

https://www.sciencedirect.com/science/article/abs/pii/S030192681200160X


Ocean temperature


There is no definitive value for the ocean temperature and there are studies mentioning different values. We went with a value that is covering the reported range across a few studies. 


Knauth, L.R. & Lowe, D.R. (2003): High Archean climatic temperature inferred from oxygen isotope geochemistry of cherts in the 3.5 Ga Swaziland Supergroup, South Africa. 2003. GSA Bulletin, Vol. 115 (5)

https://pubs.geoscienceworld.org/gsa/gsabulletin/article-abstract/115/5/566/183983/High-Archean-climatic-temperature-inferred-from?redirectedFrom=fulltext


Choi, C. (2017): How Hot Were the Oceans When Life First Evolved? Astrobiology at Nasa

https://astrobiology.nasa.gov/news/how-hot-were-the-oceans-when-life-first-evolved/


Hren, M.T. et al. (2009): Oxygen and hydrogen isotope evidence for a temperate climate 3.42 billion years ago. Nature, Vol. 462(7270)

https://pubmed.ncbi.nlm.nih.gov/19907491/


Early life


Javaux, E.J. (2019): Challenges in evidencing the earliest traces of life. Nature, Vol. 572

https://www.nature.com/articles/s41586-019-1436-4



Neoarchean 2.8 - 2.5 Ga


Knoll, A. H. & Nowak, M. A. (2017): The timetable of evolution. Science advances, Vol. 3 (5)

https://www.science.org/doi/10.1126/sciadv.1603076


Lepot, K. (2020): Signatures of early microbial life from the Archean (4 to 2.5 Ga) eon. Earth-Science Reviews, Vol. 209

https://www.sciencedirect.com/science/article/pii/S0012825220303421?via%3Dihub 


Wang, W. et al. (2021): Global-scale emergence of continental crust during the Mesoarchean–early Neoarchean. Geology, Vol. 50 (2)

https://pubs.geoscienceworld.org/gsa/geology/article-abstract/50/2/184/609543/Global-scale-emergence-of-continental-crust-during


Brenner, A.R. et al. (2020):  Paleomagnetic evidence for modern-like plate motion velocities at 3.2 Ga. Science Advances, Vol. 6 (17)

https://www.science.org/doi/10.1126/sciadv.aaz8670


Mole, D.R. et al. (2021): The formation of Neoarchean continental crust in the south-east Superior Craton by two distinct geodynamic processes. Precambrian Research, Vol. 356

https://www.sciencedirect.com/science/article/pii/S0301926821000140


Stueeken, E. et al. (2017): Environmental niches and metabolic diversity in Neoarchean lakes. Geobiology, Vol. 15 (6)

https://www.researchgate.net/publication/319396449_Environmental_niches_and_metabolic_diversity_in_Neoarchean_lakes


John Nicart. Neoarchean Era. 2023

https://sites.google.com/view/historytimecapsules/geologic-time-scale/precambrian-eon-46-billion-yrs-bc-to-541-million-yrs-bc/archean-eon-4-billion-yrs-bc-to-25-billion-yrs-bc/neoarchean-era-28-billion-yrs-to-25-billion-yrs-bc?authuser=0



Siderian 2.5 - 2.3 Ga


The Great Oxidation Event and glaciation


Lyons, T. W. et al. (2014):The rise of oxygen in Earth’s early ocean and atmosphere. Nature, Vol. 506

https://www.nature.com/articles/nature13068 


Sperling, E. A. et al. (2015): The Ecological Physiology of Earth’s Second Oxygen Revolution. The Annual Review of Ecology, Evolution, and Systematics, Vol. 46

https://www.annualreviews.org/doi/abs/10.1146/annurev-ecolsys-110512-135808 


Knoll, A. H. & Nowak, M. A. (2017): The timetable of evolution. Science advances, Vol. 3 (5)

https://www.science.org/doi/10.1126/sciadv.1603076 


Kopp, R. E. et al. (2005): The Paleoproterozoic snowball Earth: A climate disaster triggered by the evolution of oxygenic photosynthesis. PNAS, Vol. 105 (32)

https://www.pnas.org/doi/10.1073/pnas.0504878102 


Kurucz, S. et al. (2021): Earth’s first snowball event: Evidence from the early Paleoproterozoic Huronian Supergroup. Precambrian Research, Vol. 365

https://www.sciencedirect.com/science/article/abs/pii/S0301926821003363 


Bekker, A. (2014): Huronian Glaciation. Encyclopedia of Astrobiology. Springer

https://www.researchgate.net/publication/283500760_Huronian_Glaciation



Rhyacian 2.3 - 2.05 Ga


Chen, S.-C., et al. (2020): The Great Oxidation Event expanded the genetic repertoire of arsenic metabolism and cycling. PNAS, Vol. 117 (19)

https://www.pnas.org/doi/10.1073/pnas.2001063117 


Fru, E.C. et al. (2016): Arsenic stress after the Proterozoic glaciations. Scientific Reports, Vol 5

https://www.nature.com/articles/srep17789



Orosirian 2.05 Ga - 1.8 Ga


Allen, N.H. (2022): A Revision of the Formation Conditions of the Vredefort Crater. JGR Planets, Vol. 127 (8)

https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2022JE007186 


Roberts, N.M.W. (2013): The boring billion? – Lid tectonics, continental growth and environmental change associated with the Columbia supercontinent. Geoscience Frontiers, Vol. 4 (6)

https://www.sciencedirect.com/science/article/pii/S1674987113000807 


Zhu, Z. et al. (2022): The temporal distribution of Earth's supermountains and their potential link to the rise of atmospheric oxygen and biological evolution. Earth and Planetary Science Letters, Vol. 580

https://www.sciencedirect.com/science/article/abs/pii/S0012821X22000279



Statherian 1.8 - 1.6 Ga 


Bentridi, S.-E. et al. (2011): Inception and evolution of Oklo natural nuclear reactors. Comptes Rendus Geoscience, Vol. 343

https://www.academie-sciences.fr/pdf/cr/CRGeo_article.pdf 


Mukherjee, I. et al. (2018): The Boring Billion, a slingshot for Complex Life on Earth. Scientific Reports, Vol. 8 (1)

https://www.nature.com/articles/s41598-018-22695-x 


Robert, N. M. W. (2013): The boring billion? – Lid tectonics, continental growth and environmental change associated with the Columbia supercontinent. Geoscience Frontiers

Vol. 4 (6)

https://www.sciencedirect.com/science/article/pii/S1674987113000807



Calymmian 1.6 - 1.4 Ga


Eukaryotes emerge


Porter, S. M. (2020): Insights into eukaryogenesis from the fossil record. Interface Focus, Vol. 10 (4)

https://royalsocietypublishing.org/doi/10.1098/rsfs.2019.0105


Lamb, D. M. (2009): Evidence for eukaryotic diversification in the ∼1800 million-year-old Changzhougou Formation, North China. Precambrian Research, Vol. 173

https://www.sciencedirect.com/science/article/abs/pii/S0301926809001089 


Brocks, J. et al. (2023): Lost world of complex life and the late rise of the eukaryotic crown. Nature, Vol. 618

https://www.nature.com/articles/s41586-023-06170-w 


Fungi-like organisms


Hyde, K.D. et al. (2017): The ranking of fungi: a tribute to David L. Hawksworth on his 70th birthday. Fungal Diversity, Vol. 84 (4)

https://www.researchgate.net/publication/317621353_The_ranking_of_fungi_a_tribute_to_David_L_Hawksworth_on_his_70th_birthday


Singh, V.K. et al. (2019): A New Record of Acanthomorphic Acritarch Tappania Yin from the Early Mesoproterozoic Saraipali Formation, Singhora Group, Chhattisgarh Supergroup, India and its Biostratigraphic Significance. Journal of the Geological Society of India, Vol. 94

https://link.springer.com/article/10.1007/s12594-019-1343-1


Brown, M. (2020): Plate Tectonics and the Archean Earth. Annual Review of Earth and Planetary Sciences, Vol. 48

https://www.annualreviews.org/doi/pdf/10.1146/annurev-earth-081619-052705


O’Neill, C. et al. (2015): Earth’s punctuated tectonic evolution: cause and effect. Continent Formation Through Time

https://pubs.geoscienceworld.org/gsl/books/book/1743/chapter-abstract/107634932/Earth-s-punctuated-tectonic-evolutioncause-and?redirectedFrom=fulltext


Boyer, J. (2019): Calymmian Period

https://sites.google.com/site/paleoplant/geologic/proterozoic/mesoproterozoic/calymmian



Ectasian 1.4 Ga - 1.2 Ga


Biggin, A.J. et al. (2015): Palaeomagnetic field intensity variations suggest Mesoproterozoic inner-core nucleation. Nature, Vol 526

https://www.nature.com/articles/nature15523



Stenian 1.2 Ga - 1.0 Ga


First evidence of sexual reproduction


Butterfield, N. J. (2000): Bangiomorpha pubescens n. gen., n. sp.: implications for the evolution of sex, multicellularity, and the Mesoproterozoic/Neoproterozoic radiation of eukaryotes. Paleobiology, Vol. 26 (3)

https://www.researchgate.net/publication/278693786_Bangiomorpha_pubescens_n_gen_n_sp_implications_for_the_evolution_of_sex_multicellularity_and_the_MesoproterozoicNeoproterozoic_radiation_of_eukaryotes 


Gibson, T. M. et al. (2017): Precise age of Bangiomorpha pubescens dates the origin of eukaryotic photosynthesis. Geology, Vol. 46 (2)

https://pubs.geoscienceworld.org/gsa/geology/article-abstract/46/2/135/524864/Precise-age-of-Bangiomorpha-pubescens-dates-the



Tonian 1.0 Ga - 720 Ma


First single-celled predator


Knoll A. (2014) Paleobiological perspectives on early eukaryotic evolution. Cold Spring Harbor perspectives in biology, Vol. 6 (1)

https://pubmed.ncbi.nlm.nih.gov/24384569/ 


Britannica. Tonian Period. Retrieved November 2023.

https://www.britannica.com/science/Tonian-Period



Cryogenian 720 - 635 Ma


Cryogenian ice ages

 

Song, H. et al. (2023): Mid-latitudinal habitable environment for marine eukaryotes during the waning stage of the Marinoan snowball glaciation. Nature Communications, Vol. 14

https://www.nature.com/articles/s41467-023-37172-x 


Zarsky, J.D. et al. (2022): Cryogenian Glacial Habitats as a Plant Terrestrialisation Cradle – The Origin of the Anydrophytes and Zygnematophyceae Split. Frontiers in Plant Science, Vol. 12

https://www.frontiersin.org/articles/10.3389/fpls.2021.735020/full#B54



Ediacaran 635 Ma - 539 Ma


Ediacaran biota


Darroch S et al. (2018): Ediacaran Extinction and Cambrian Explosion

https://www.sciencedirect.com/science/article/abs/pii/S016953471830140X


Narbonne, G., et al. (2009): Reconstructing a lost world: Ediacaran rangeomorphs from Spaniard's Bay, Newfoundland. https://www.cambridge.org/core/journals/journal-of-paleontology/article/abs/reconstructing-a-lost-world-ediacaran-rangeomorphs-from-spaniards-bay-newfoundland/EC8A994CAE4CBA8A162336221EC5EE5C


Gondwana


Joseph G. Meert and Bruce S. Lieberman. The Neoproterozoic assembly of Gondwana and its relationship to the Ediacaran–Cambrian radiation. 2008.

https://www.sciencedirect.com/science/article/abs/pii/S1342937X07001360



Cambrian 539 - 485 Ma


Cambrian Explosion


Darroch, S. A. F.et al. (2018): Ediacaran Extinction and Cambrian Explosion

https://www.cell.com/trends/ecology-evolution/fulltext/S0169-5347(18)30140-X 


Zhang, X. & Shu, D. (2021): Current understanding on the Cambrian Explosion: questions and answers. Paläontologische Zeitschrift, Vol. 95

https://link.springer.com/article/10.1007/s12542-021-00568-5#Sec10  


Dahl, T.W. & Arens, S.K.M. (2020): The impacts of land plant evolution on Earth's climate and oxygenation state – An interdisciplinary review. Chemical Geology, Vol. 547

https://core.ac.uk/download/pdf/333604636.pdf



Silurian 444 - 419 Ma


Dahl, T.W. & Arens, S.K.M. (2020): The impacts of land plant evolution on Earth's climate and oxygenation state – An interdisciplinary review. Chemical Geology, Vol. 547

https://core.ac.uk/download/pdf/333604636.pdf

Kenrick, P. & Crane, P.R. (1997): The origin and early evolution of

plants on land. Nature, Vol. 389

https://www.nature.com/articles/37918 




Devonian 419 - 359 Ma

Tiktaalik


Stewart, A.T. et al. (2022): A new elpistostegalian from the Late Devonian of the Canadian Arctic. Nature, Vol. 608

https://www.nature.com/articles/s41586-022-04990-w

Dahl, T.W. & Arens, S.K.M. (2020): The impacts of land plant evolution on Earth's climate and oxygenation state – An interdisciplinary review. Chemical Geology, Vol. 547

https://core.ac.uk/download/pdf/333604636.pdf 




Carboniferous 359 - 299 Ma


Coal 


Hibbett, D. et al. (2016): Climate, decay, and the death of the coal forests. Current Biology, Vol. 26

https://www.sciencedirect.com/science/article/pii/S0960982216000646 


Wilson, J.P. et al. (2017): Dynamic Carboniferous tropical forests: new views of plant function and potential for physiological forcing of climate. New Phytologist, Vol. 215 (4)

https://nph.onlinelibrary.wiley.com/doi/full/10.1111/nph.14700 


Nelsen, M. P. et al. (2016): Delayed fungal evolution did not cause the Paleozoic peak in coal production. PNAS, Vol. 113 (9)

https://www.pnas.org/doi/abs/10.1073/pnas.1517943113


Permian 299 Ma - 252 Ma


Mass extinction


Barnosky, A. D. et al. (2011): Has the Earth’s sixth mass extinction already arrived? Nature, Vol. 471

https://www.nature.com/articles/nature09678 


Rothman, D. H. et al. (2014): Methanogenic burst in the end-Permian carbon cycle. PNAS, Vol. 111 (15)

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3992638/

Pangea


Britannica (2023): Pangea

https://www.britannica.com/place/Pangea 


Scotese, C.R. & Langford, R.P. (1995): Pangea and the Paleogeography of the Permian. The Permian of Northern Pangea

https://link.springer.com/chapter/10.1007/978-3-642-78593-1_1




Jurassic 201 - 145 Ma


Brusatte, S.L. et al. (2008): Superiority, Competition, and Opportunism in the Evolutionary Radiation of Dinosaurs. Science, Vol. 321 (5895)

https://www.science.org/doi/10.1126/science.1161833




Cretaceous 145 - 66 Ma


Keller, G. (2008): Cretaceous climate, volcanism, impacts, and biotic effects. Cretaceous Research, Vol. 29 (5-6)

https://www.sciencedirect.com/science/article/abs/pii/S0195667108000566



Paleogene 66 - 23 Ma


Lyson, T. R. et al. (2019): Exceptional continental record of biotic recovery after the Cretaceous–Paleogene mass extinction. Science, Vol. 366

https://www.researchgate.net/publication/336781604_Exceptional_continental_record_of_biotic_recovery_after_the_Cretaceous-Paleogene_mass_extinction 


Barnosky, A. D. et al. (2011): Has the Earth’s sixth mass extinction already arrived? Nature, Vol. 471

https://www.nature.com/articles/nature09678 


Keller, G. (2008): Cretaceous climate, volcanism, impacts, and biotic effects. Cretaceous Research, Vol. 29 (5-6)

https://www.sciencedirect.com/science/article/abs/pii/S0195667108000566 




Neogene 23 - 2.6 Ma

Britannica (retrieved 2023): Hominin evolution
https://www.britannica.com/science/Quaternary/Hominin-evolution 




Quaternary 2.6 - 0


Hublin et al. (2017): New fossils from Jebel Irhoud, Morocco and the pan-African origin of Homo sapiens. Nature, Vol. 546 

https://www.nature.com/articles/nature22336?sf86030179=1