Earth.fm is a non-profit, growing library of 700+ immersive natural soundscapes from all over the world. Inspired by the life-changing teachings of Zen Master Thich Nhat Hanh, our aspiration is to help each other wake up to the miracle of Mother Earth and do everything in our power to support her.

Listen to any episode from the archive or explore the frequently asked questions below.

Experimental research on stress recovery in natural environments is limited, as is study of the effect of sounds of nature. After inducing stress by means of a virtual stress test, we explored physiological recovery in two different virtual natural environments (with and without exposure to sounds of nature) and in one control condition. Cardiovascular data and saliva cortisol were collected. Repeated ANOVA measurements indicated parasympathetic activation in the group subjected to sounds of nature in a virtual natural environment, suggesting enhanced stress recovery may occur in such surroundings. The group that recovered in virtual nature without sound and the control group displayed no particular autonomic activation or deactivation. The results demonstrate a potential mechanistic link between nature, the sounds of nature, and stress recovery, and suggest the potential importance of virtual reality as a tool in this research field.


Sounds Of Nature Download


Download 🔥 https://tinurll.com/2y68oa 🔥



Ulrich et al. [6] used video films with sound and found faster physiological stress recovery during exposure to films depicting nature compared with urban environments. However, Ulrich et al. did not control for sound pressure level. Indeed, the soundtrack to their films of urban environmental settings had considerably higher sound pressure levels than the soundtrack to the films of nature environments. This makes it difficult to determine whether the effect was related to the characteristics of the environments or to differences in sound pressure levels. So, although positive effects of visual natural environments are well established, no research has been done using only auditory stimulation with controlled stimuli and sound pressure levels.

During the baseline period, the participants were asked to relax in silence. At the end of the period a prerecorded female voice reminded them that the first stress test was about to begin. After the stress test, the female voice instructed the participants to relax and one of the four experimental sounds was presented. This switch between stress test and recovery was repeated three more times (see Figure 1).

Figure 3 suggests that although SCL immediately after the stressor was similar for the different conditions, recovery was faster during exposure to the nature sound than to the three noise conditions. The ambient and low noise had the second fastest, and high noise the slowest recovery. A slight upswing during the last 50 seconds of the recovery period was seen for SCL recovery during the high noise, possibly reflecting an increased arousal due to prolonged exposure to the unpleasant noise. In a 4  4 mixed ANCOVA, the mean SCL for each participant during the recovery period was used as the dependent variable, sound as a within-subjects variable, and presentation order as a between-subjects variable. The baseline measure was included in the analysis as covariate [27].

where y is baseline corrected SCL, x is time (in seconds) and b1, b2 and b3 are constants. Figure 4 shows the fitted functions for the four experimental sounds. The fit, R2, for the nature sound, low noise and ambient noise was > 0.99, it was slightly lower for the high noise, R2 = 0.96. RMS-error for the nature, high noise, ambient and low noise sound was 0.0088, 0.017, 0.0090 and 0.0097 S, respectively. The half life recovery was calculated using Equation 1, by solving for x at the point where SCL had been reduced by half, compared with its value at x = 0 (see dotted line in Figure 4). The high noise had the longest half life of 159.8 s, the half life of the other three were 121.3 s for ambient noise, low noise 111.4 s and nature sound 101.3 s. Reliable statistical testing of individual half life values was not possible, since the estimated constants in several cases generated complex numbers, that resulted in missing data when half life values were calculated.

Skin conductance level (SCL) as a function of time, shown separately for the four sounds. Curves were fitted to the group data. Constants of Equation 1 and half life value (x) are indicated in each diagram.

The present results suggest that recovery from sympathetic arousal is affected by type of sound (nature sound versus noise). Recovery was faster during the nature sound (50 dBA) compared with the noises, including the low noise (50 dBA) and the ambient noise (40 dBA). The mechanisms behind the faster recovery could be related to positive emotions (pleasantness), evoked by the nature sound as suggested by previous research using non audio film stimuli [9]. Other perceptual attributes may also influence recovery. The Ambient noise was perceived as less familiar than the other sounds (Figure 2), presumably because it contained no identifiable sources. One may speculate that this lack of information might have caused an increased mental activity and thereby an increased SCL, compared with the nature sound (cf. [28]). An effect of sound pressure level can be seen in the difference between high and low noise, this difference is in line with previous psychoacoustic research [12] and is not a surprising considering the large difference (30 dBA) in sound pressure level.

Research suggests that visual impressions of natural compared with urban environments facilitate recovery after psychological stress. To test whether auditory stimulation has similar effects, 40 subjects were exposed to sounds from nature or noisy environments after a stressful mental arithmetic task. Skin conductance level (SCL) was used to index sympathetic activation, and high frequency heart rate variability (HF HRV) was used to index parasympathetic activation. Although HF HRV showed no effects, SCL recovery tended to be faster during natural sound than noisy environments. These results suggest that nature sounds facilitate recovery from sympathetic activation after a psychological stressor.

The sound of a choking ocean

Red tide bloom of toxic dinoflagellates, like this one in southeast Alaska, can choke the sounds from underwater life. Photo by Jeff Foott/via Getty Images

Structural and earthquake engineer Karl Steinbrugge archived some of the earliest recordings of earthquake-related noise in a 1974 publication in the journal, Bulletin of the Seismological Society of America. The backstories for these recordings echo their serendipitous nature. The earthquake audio was captured during church sermons, pay phone calls, court depositions and studio recording sessions.

Attention restoration theory (ART) posits that stimuli found in nature may restore directed attention functioning by reducing demands on the endogenous attention system. In the present experiment, we assessed whether nature-related cognitive benefits extended to auditory presentations of nature, a topic that has been understudied. To assess directed attention, we created a composite measure consisting of a backward digit span task and a dual n-back task. Participants completed these cognitive measures and an affective questionnaire before and after listening to and aesthetically judging either natural or urban soundscapes (between-participants). Relative to participants who were exposed to urban soundscapes, we observed significant improvements in cognitive performance for individuals exposed to nature. Urban soundscapes did not systematically affect performance either adversely or beneficially. Natural sounds did not differentially change positive or negative affect, despite these sounds being aesthetically preferred to urban sounds. These results provide initial evidence that brief experiences with natural sounds can improve directed attention functioning in a single experimental session.

The psychological benefits of interacting with nature have been discussed for well over a century (e.g., Olmsted, 1993), with research over the past few decades assessing how interactions with nature specifically may benefit cognition and cognitive development (e.g., Bratman, Hamilton, & Daily, 2012). For example, the extent of available green space has been positively associated with the development of executive functions in children, even after controlling for factors such as socioeconomic status (Dadvand et al., 2015). Even brief interventions in which participants take a walk through nature or view nature images on a computer screen have been shown to improve the functioning of directed attention relative to interventions in which participants are exposed to more urban environments (Berman, Jonides, & Kaplan, 2008).

One prominent account of how nature may improve aspects of cognition is attention restoration theory (ART), which posits that nature environments are particularly well-suited for reducing demands on the endogenous attention system, thereby allowing subsequent restoration of attentional functioning (e.g., Kaplan, 1995). The fact that simply viewing pictures of nature environments can improve performance on tasks requiring directed attention (Berman et al., 2008) suggests that nature, in part, may improve performance through the visual features that differentiate natural and urban scenes (see Berman et al., 2014), which may engage attentional mechanisms in a manner that restores directed attention. However, the focus on visual depictions of nature in the ART literature has resulted in a relative paucity of research on other modalities, such as audition. As such, the present experiment tests whether auditory representations of nature confer similar benefits to directed-attention functioning.

Beyond ART, two broad research findings support potential cognitive benefits from experiencing nature sounds. First, prior studies have demonstrated widespread associations between noise levels and health. Noise pollution (e.g., urban environmental noises with sustained, high-amplitudes) has been associated with greater amounts of reported stress and distraction (e.g., de Paiva Vianna, Cardoso, & Rodrigues, 2015), which can lead to chronic learning and attention problems (see Hammer, Swinburn, & Neitzel, 2014). Thus, natural sounds may improve aspects of cognition relative to urban sounds because these two classes of sounds generally differ with respect to their amplitude in the real world (see McDonald et al., 1995), with nature sounds being thought to provide a quiet respite from urban environments (Mace, Bell, & Loomis, 2004). In this kind of framework, however, nature sounds may not confer any cognitive benefits relative to urban sounds when presented at the same amplitude. 17dc91bb1f

quantitative aptitude book for ssc cgl pdf download

download film emma 1996 subtitle indonesia

cara download mega

download soal pts pai kelas 3 semester 2

download live gparted