Ryukoku Representation Theory Seminar
Ryukoku Representation Theory Seminar
Date: TBA
Place: TBA
Speaker: TBA
Title: TBA
Abstract: TBA
Abstract: (Click here for PDF.)
We realize all irreducible unitary representations of the group $\mathrm{SO}_0(n+1,1)$ on explicit Hilbert spaces of vector-valued $L^2$-functions on $\mathbb{R}^n\setminus \{0\}$. The key ingredient in our construction is an explicit expression for the standard Knapp--Stein intertwining operators between arbitrary principal series representations in the so-called $F$-picture which is obtained from the non-compact picture on a maximal unipotent subgroup $N \cong \mathbb{R}^n$ by applying the Euclidean Fourier transform. As an application, we describe the space of Whittaker vectors on all irreducible Casselman--Wallach representations. Moreover, the new realizations of the irreducible unitary representations immediately reveal their decomposition into irreducible representations of a parabolic subgroup, thus providing a simple proof of a recent result of Liu--Oshima--Yu. This is joint work with Frederik Bang-Jensen and Jan Frahm.
Abstract: After recalling the definitions of several of the most commonly used notions of rank on tensors, we will discuss some of the recent applications of representation theory to the understanding of these notions of rank, as well as some other recent major advances in this field. Then, we will focus on the extent to which basic properties of the rank of matrices extend to these ranks of tensors. Finally, we will highlight some central difficulties common to several open questions on these ranks.
Abstract: カンドルは結び目理論を由来とする代数系である.その構造は群の共役演算の抽象化ともみなせ,近年では対称空間やHopf代数など様々な観点から研究されている.カンドル拡大とは,各ファイバーが等しい濃度を持つ全射カンドル準同型である.この概念は,カンドル2-コサイクルの一般化ともみなされ,結び目理論では不変量への応用などに用いられ重要な役割を果たす.しかし,一般には非自明なカンドル拡大の構成は困難である.本講演では,主にカンドルの基本事項を紹介する.さらに,田丸博士氏との共同研究で得られた具体的なカンドル拡大の幾何学的な構成について紹介する.
Abstract: カンドル(quandle)は結び目理論におけるReidemeister移動を抽象的に取り出して得られる代数構造であり、群と比較されることが多い。特に、smooth quandleと呼ばれる多様体構造と代数構造が構造が結びついているカンドルのクラスがあり、群論におけるLie群のような対象だと目されている。smooth quandleに含まれる離散部分集合でカンドル構造を引継ぐようなものはある種の一意性があり、smooth quandleの持つ対称性の本質を秘めているのではないかと予想されている。本講演では、カンドルの基礎的な事項から始め、予想の紹介を行う。
Date : October 18 (Fri), 2024 (16:00--17:00, online)
Place: Zoom (For the Zoom URL, please contact one of the organizers.)
Speaker: José Luis Carmona Jiménez (Simion Stoilow Institute of Mathematics of the Romanian Academy)
Title: Ambrose-Singer connections
Abstract: Homogeneous spaces are differentiable manifolds where there is a transitive action of a Lie group. That is, a group of global transformations such that for any two points, there exists a transformation that sends one point to the other. Under suitable conditions and applying those transformations, we can transport any tensor we have at one point to another point, for example, a metric or a symplectic tensor.
The Ambrose-Singer Theorem characterizes Riemannian homogeneous spaces via the existence of an invariant tensor that satisfies a system of covariant equations. This tensor is called a homogeneous structure and the Ambrose-Singer Theorem is the cornerstone of the program initiated by Tricerri-Vanhecke that studies Riemannian homogeneous manifolds through their homogeneous structures.
We have divided this seminar into three parts:
On the History of Ambrose-Singer Theorems: We present the Ambrose-Singer theorem and its generalizations throughout history either with a local or global homogeneity condition. After that, we discuss the principal research program introduced by Franco Tricerri and Lieven Vanhecke and introduce the homogeneous structure tensor.
The Homogeneous Geometries of the Complex Hyperbolic Space: A homogeneous geometry of the complex hyperbolic space is understood as a transitive action by isometries on it, together with an Ambrose-Singer connection. Surprisingly, comprehensive lists of all homogeneous descriptions of such spaces are unknown in many cases. We compute all the Ambrose-Singer connections in the complex hyperbolic space, its homogeneous structures, and classify them in terms of the holonomy of the Ambrose-Singer connection.
The Tricerri-Vanhecke’s Program for Symplectic Geometry: We present the Ambrose-Singer Theorem for general homogeneous manifolds and apply the Tricerri-Vanhecke program to symplectic and Fedosov manifolds.
Abstract: Jorgenson--Lang envisions and pursues an ambitious program on the systematic construction of Selberg-type zeta functions associated to quotients of symmetric spaces. The principal motivation behind the program is to present geometric constructions of zeta functions and to explore analytic aspects of regularized products. To obtain a sequence of the Selberg-type zeta functions and relate their analytic properties to the geometry of symmetric spaces, Jorgenson--Lang proposes an initial procedure that yields a regularized theta inversion formula. A central component of the program is deducing the theta inversion formula that can further develop the theory of zeta functions. This theta inversion formula is conjecturally given by an explicit eigenfunction expansion, but the analytic difficulty of describing this expansion presents a significant obstacle to implementing the procedure.
In this talk, we consider a variation of Jorgenson—Lang’s program that aims to circumvent such obstacles and discuss a resulting zeta-type function $\mathcal{Z}_n$ assigned to $SL(n,\mathbb{Z}[i])\backslash SL(n,\mathbb{C})/SU(n)$. Roughly speaking, $\mathcal{Z}_n$ is an additive spectral zeta function expressed in terms of the set of positive roots of $\mathfrak{sl}(n,\mathbb{C})$. We will explain aspects of the analytic structure of $\mathcal{Z}_n$, using a sequence of symmetric spaces. In the case $n=2$, we discuss how $\mathcal{Z}_2$ can descend to Selberg-type zeta function assigned to $SL(2,\mathbb{Z}[i])\backslash SL(2,\mathbb{C})/SU(2)$ in the original program, from the view of a ``localization principle.’’
Date: February 27 (Th), 2025 (16:00-17:30, in person)
Place: Wagenkan (和顔館)・B103
Speaker: Nagatoshi Sasano (佐々野 詠淑) (Ryukoku University)
Title: 標準的な五つ組を用いた表現の概均質性判定法とプログラミング
Abstract: ある代数群Gとその(有理)表現(ρ ,V)がZariski位相で稠密な軌道を持つとき,三つ組(G,ρ,V)は概均質ベクトル空間であるという。
概均質ベクトル空間はゼータ関数の理論とも関係しており,数論においても重要な対象である。
与えられた表現が概均質ベクトル空間であるかそうでないかは,いくつかの特別な場合を除いて個別に判定する必要がある。しかし,これを手計算で処理しようとすると,古典群の表現であっても表現が直和やテンソル積を含んでいる場合は計算が煩雑になる。
本講演では,与えられた表現が概均質ベクトル空間であるか,そうでないかを機械計算で判定するプログラムを提案する。
まず,標準的な五つ組のΦ-写像という概念を用いて概均質性の判定が出来ることを示す。
そして,直和やテンソル積に対する数学的な計算式を示し,実際のプログラムに直す上での工夫や計算例を紹介する。
最後に,発表時点での未解決課題などについて述べる。
Date: December 2 (Mon), 2024 (17:00--18:00, online)
Place: Zoom (For the Zoom URL, please contact one of the organizers.)
Speaker: Javier Martínez-Aguinaga (Complutense University of Madrid)
Title: Tangent distributions of maximal growth and the h-principle
Abstract: In this talk we will provide an accessible introduction to Gromov's h-principle. Our goal is to offer a historical overview of this branch of Mathematics, motivating it through visual examples and putting special emphasis on the method of Convex Integration.
We will then show how to relate this theory to the study of maximal growth distributions on smooth manifolds M; i.e. tangent subbundles D⊂TM whose sections generate new directions in TM as fast as possible by Lie bracket operation. These include Contact and Engel structures.
We establish a homotopical classification of rank >2 maximal growth distributions on smooth manifolds and we answer, for k>2, the long-standing open question in the field about existence of rank-k maximal growth distributions on parallelisable manifolds. Part of these results are joint work with Álvaro del Pino (Utrecht University).
References:
[1] J. Martínez-Aguinaga, Existence and classification of maximal growth distributions. Preprint. arXiv:2308.10762.
[2] J. Martínez-Aguinaga and Á. del Pino, Convex integration with avoidance and hyperbolic (4,6) distributions. Preprint. arXiv:2112.14632.
Date: November 25 (Mon), 2024 (16:00--17:30, in person)
Place: Wagenkan (和顔館)・B103
Speaker: Jonathan Ditlevsen (the University of Tokyo)
Title: Symmetry breaking operators for the pair (GL(n+1,R),GL(n,R))
Abstract: In this talk, we construct explicit symmetry breaking operators (SBOs) between principal series representations of the group GL(n+1,R) and its subgroup GL(n,R). Using Bernstein–Sato identities, we find a holomorphic renormalization of a meromorphic family of SBOs. We then apply the Source operator method to construct differential SBOs and show how these differential SBOs arise as residues of the holomorphic family of SBOs.
Date: July 23 (Tue), 2024 (16:00--17:30, in person)
Place: Wagenkan (和顔館)・B110
Speaker: Atsumu Sasaki (笹木 集夢) (Tokai University)
Title: Weyl group of pseudo-Riemannian symmetric spaces
Abstract: 非コンパクトな実半単純リー群の擬リーマン対称空間における極大コンパクト部分群の作用において,その軌道分解は擬リーマン対称空間の分裂カルタン部分環における正のWeyl chamberの閉包によって特徴付けられる.これは擬リーマン対称空間に対するカルタン分解の帰結であり,その証明では実半単純リー群のMostow分解と擬リーマン対称空間に付随する実簡約リー群のカルタン分解を組み合わせることにより与えられる.特に,正のWeyl chamberの閉包は後者の分解に現れ,付随する実簡約リー群のWeyl群の分裂カルタン部分環における作用の完全代表系である.
一方で,擬リーマン対称空間の軌道分解を群論的視点によって非コンパクトな実半単純リー群の両側剰余分解とみると,分裂カルタン部分環における両側作用によるWeyl群の類似を考察することは自然であると考えられるが,上述の証明においてはこの概念は現れていないように思われる.本講演では,これらを背景として擬リーマン対称空間のWeyl群を定義し付随する実簡約リー群のWeyl群との関係について解説する.また,本研究の目的および今後の展望についてもお話したい.
Toshihisa Kubo (久保 利久) (E-mail: toskubo [at] econ.ryukoku.ac.jp)
Nagatoshi Sasano (佐々野 詠淑)
Víctor Pérez-Valdés