P. Montero de Hijes1,2, R. Berthelard3, C.P. Tripathi3, A. Zaragoza1,4,
M.A. Gonzalez2, J.L.F. Abascal2, A.L. Benavides4, S. Denis-Quanquin5, B. Issenmann3, E.Sanz2, L. Joly3,
C. Valeriani1, M. Anisimov6 and F. Caupin 3
1Departamento de Estructura de la Materia, Fisica Termica y Electronica, Facultad de Ciencias Fisicas,
Universidad Complutense de Madrid, Madrid 28040, Spain
2Departamento de Quimica Fisica, Facultad de Ciencias Quimicas,
Universidad Complutense de Madrid, 28040 Madrid, Spain
3Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622, VILLEURBANNE, France
4Departamento de Ingenieria Fisica, Division de Ciencias e Ingenierias, Universidad de Guanajuato, 37150 Leon, Mexico.
5Université de Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR 5182,
Université Lyon 1, Laboratoire de Chimie, 46 allée d'Italie, F-69364, LYON, France
6Department of Chemical and Biomolecular Engineering and Institute for Physical Science and Technology,
University of Maryland, College Park, Maryland 20742, USA
The puzzling thermodynamic and dynamic anomalies of water keep stimulating research, with a particular focus on the regions of the phase diagram where the liquid is metastable with respect to ice or vapor [1]. Recent advances include: a growing violation of the Stokes-Einstein relation connecting viscosity and diffusion down to -34 °C at ambient pressure [2]; the possible observation of maxima in isothermal compressibility along isobars at negative [3] or zero [4] pressure; and measurements with improved accuracy of the isobaric heat capacity of supercooled water by adiabatic calorimetry [5].
One of the scenarios proposed to explain the anomalies of water is the second critical point scenario [6]. Based on simulations, it posits the existence of a transition between two distinct liquid phases in deeply supercooled water, which is an example of the phenomenon of polyamorphism [7].
In this talk, I will review our recent results on different aspects of the thermodynamics and dynamics of metastable water. We have developed a new two state model for real water, inspired by our previous work with a water model [8]. Combining the tensile limit of the liquid (spinodal) and the postulated liquid-liquid transition, we are able to quantitatively reproduce thermodynamic properties from 300 K down to the lowest measured temperatures, and from -140 MPa up to 400 MPa [9]. Concerning dynamics, our recent simulations (associated with a two-state model) [10] and measurements of viscosity and diffusion give new insights into their decoupling upon cooling (violation of the Stokes-Einstein relation). I will also discuss the effects on the anomalies caused by adding a solute.
[1] P. Gallo et al., Chem. Rev. 116, 7463 (2016).
[2] A. Dehaoui, B. Issenmann, and F. Caupin, Proc. Natl. Acad. Sci. U. S. A. 112, 12020 (2015).
[3] V. Holten, C. Qiu, E. Guillerm, M. Wilke, J. Ricka, M. Frenz, and F. Caupin, J. Phys. Chem. Lett. 8, 5519 (2017).
[4] K. H. Kim, A. Späh, H. Pathak, F. Perakis, D. Mariedahl, K. Amann-Winkel, J. A. Sellberg, J. H. Lee, S. Kim, J. Park, K. H. Nam, T. Katayama, and A. Nilsson, Science 358, 1589 (2017); Science 360, eaat1729
(2018); F. Caupin, V. Holten, C. Qiu, E. Guillerm, M. Wilke, M. Frenz, J. Teixeira, and A. K. Soper, Science 360, eaat1634 (2018).
[5] V. P. Voronov, V. E. Podnek, and M. A. Anisimov, arXiv:1812.01085 [cond-mat, physics:physics] (2018)
[6] P. H. Poole, F. Sciortino, U. Essmann, and H. E. Stanley, Nature 360, 324 (1992).
[7] M.A. Anisimov, M. Duška, F. Caupin, L.E. Amrhein, A. Rosenbaum, and R.J. Sadus, Phys. Rev. X 8 011004 (2018).
[8] J.W. Biddle, R.S. Singh, E.M. Sparano, F. Ricci, M.A. Gonzalez, C. Valeriani, J.L.F. Abascal, P.G. Debenedetti, M.A. Anisimov, and F. Caupin, J. Chem. Phys. 146, 034502 (2017).
[9] F. Caupin and M. Anisimov, submitted to J. Chem. Phys.
[10] P. Montero de Hijes, E. Sanz, L. Joly, C. Valeriani, and F. Caupin, J. Chem. Phys. 149 094503 (2018).