Robust teleportation of a topological surface code and cascade of topological quantum phase transitions

March 20, 2024 (Wed.) at 1:30PM (ET)


Guo-Yi Zhu

University of Cologne

Teleportation is a facet where quantum measurements can act as a powerful resource in quantum physics, as local measurements allow to steer quantum information in a non-local way. While this has long been established for a single Bell pair, the teleportation of a fault-tolerant logical qubit presents a fundamentally different challenge as it requires the teleportation of a many-qubit state. Here we investigate a tangible protocol for teleporting a long-range entangled surface code state using elementary Bell measurements and its stability in the presence of tunable coherent errors. We relate the underlying threshold problem to the physics of anyon condensation under weak measurements and map it to a variant of the Ashkin-Teller model of statistical mechanics with Nishimori type disorder, which gives rise to a cascade of phase transitions. Tuning the angle of the local Bell measurements, we find a continuously varying threshold. Notably, the threshold moves to infinity for the X+Z angle along the self-dual line -- indicating an optimal protocol that is fault-tolerant even in the presence of coherent noise. Our teleportation protocol, which can be readily implemented in dynamically configurable Rydberg atom arrays, thereby gives guidance for a practical demonstration of the power of quantum measurements.