Address:
School of Mathematical Sciences
University of Nottingham Ningbo China
199 Taikang East Road
Ningbo 315100
China
Email:
peter.pang@nottingham.edu.cn
I am assistant professor of applied mathematics at the University of Nottingham in Ningbo.
Research interests: stochastic partial differential equations, rough analysis, probability theory, dynamical systems.
Institutional webpage:
https://www.mn.uio.no/math/english/people/aca/ptr/index.html
Preprints and papers:
F. Harang, C. Ling, and P.H.C. Pang. Weak existence for degenerate distribution dependent SDEs with multiplicative noise -- a pathwise regularization approach. arXiv:2509.03665 [math.PR] (2025), 1 -- 18. Submitted.
U.S. Fjordholm, K.H. Karlsen, and P.H.C. Pang. Semi-discrete heat equations with variable coefficients and the parametrix method. arXiv:2506.18649 [math.NA] (2025), 1--31. Submitted.
D. Alonso-Orán, P.H.C. Pang, H. Tang. Damping-diffusion-noise interactions in the stochastic Camassa--Holm equation. arXiv:2410.07649 [math.AP] (2024), 1 -- 29. Submitted.
K.H. Karlsen and P.H.C. Pang. Convergence of stochastic integrals with applications to transport equations and conservation laws with noise. arXiv:2404.16157 [math.PR], (2024), 1--31. Submitted.
U.S. Fjordholm, K.H. Karlsen, and P.H.C. Pang. Convergent finite difference schemes for stochastic transport equations. SIAM J. Numer. Anal., 63(1) (2025), 149-192. arXiv link
L. Galimberti, H. Holden, K.H. Karlsen, and P.H.C. Pang. Global existence of dissipative solutions to the Camassa--Holm equation with transport noise. J. Differential Equations, 387 (2024), 1 -- 103. arXiv link
H. Holden, K.H. Karlsen, and P.H.C. Pang. Global well-posednes of the viscous stochastic Camassa--Holm equation with gradient noise. Discrete Contin. Dyn. Syst., 43(2) (2023), 568 -- 618. arXiv link
H. Holden, K.H. Karlsen, and P.H.C. Pang. Strong solutions of a stochsatic differential equation with irregular random drift. Stochastic Process. Appl., 150 (2022), 655 -- 677. arXiv link
H. Holden, K.H. Karlsen, and P.H.C. Pang. The Hunter--Saxton equation with noise. J. Differential Equations, 270 (2021), 725 -- 786. arXiv link
G.-Q. G. Chen, and P.H.C. Pang. Nonlinear anisotropic degenerate parabolic-hyperbolic equations with stochastic forcing. J. Funct. Anal., 281 (2021), 109222. arXiv link
Notes:
The stochastic compactness method in SPDEs, mini-course delivered at the Mittag-Leffler institute, 20th--24th November, 2023. (updated: 25th April, 2024.)
Coding things: https://github.com/ptrhcpang