Dr. Otto Overkamp
Mathematisches Institut der Heinrich-Heine-Universität Düsseldorf
Universitätsstraße 1
40225 Düsseldorf
Germany
otto(dot)overkamp(at)uni-duesseldorf(dot)de
Mathematisches Institut der Heinrich-Heine-Universität Düsseldorf
Universitätsstraße 1
40225 Düsseldorf
Germany
otto(dot)overkamp(at)uni-duesseldorf(dot)de
Ph.D. in Mathematics at Imperial College London (December 2018)
Research Associate (Wissenschaftlicher Mitarbeiter) at the Institut für Algebra, Zahlentheorie und Diskrete Mathematik,
Leibniz Universität Hannover (October 2018 - March 2021)
Academic Visitor at the Mathematical Institute of the University of Oxford (with a DFG Research Grant; April 2021 - March 2023)
College Lecturer at St. Peter’s College, Oxford (October 2021 - March 2023)
Research Associate (Wissenschaftlicher Mitarbeiter) at the Mathematisch-Naturwissenschaftliche Fakultät, Heinrich-Heine-Universität Düsseldorf (since April 2023)
Research interests:
Algebraic geometry with applications to number theory and arithmetic
Characteristic p methods
Algebraic groups, Néron models
Picard functors, moduli spaces
Publications and preprints (all accessible on the ArXiV):
[1] Overkamp, O. On Bosch-Lütkebohmert-Raynaud’s Conjecture I. Submitted. Available at https://arxiv.org/abs/2409.13599.
[2] Overkamp, O., Suzuki, T. Existence of global Néron models beyond semi-abelian varieties. Submitted. Available at https://arxiv.org/abs/2310.14567.
[3] Overkamp, O., Suzuki, T. Chai’s conjectures on base change conductors. To appear in J. Algebraic Geometry. Available at https://arxiv.org/abs/2310.01289.
[4] Overkamp, O. Chai’s conjecture for semiabelian Jacobians. Compositio Math. 161 (2025), pp. 120–147.
[5] Overkamp, O. On Jacobians of geometrically reduced curves and their Néron models. Trans. Amer. Math. Soc., Vol. 377, Nr. 8, pp. 5863-5903, 2024.
[6] Overkamp, O., Smeets, A. On logarithmic reduction of cohomologically tame elliptic surfaces. Available at https://arxiv.org/abs/2212.01070.
[7] Overkamp, O. Néron models of pseudo-Abelian varieties. Rend. Sem. Math. Padova, Vol. 152 (2024), pp. 83-116.
[8] Overkamp, O. Degeneration of Kummer surfaces. Math. Proc. Cam. Phil. Soc., Vol. 171, Issue 1, pp. 65-97, 2021.
[9] Overkamp, O. Finite descent obstruction and non-abelian reciprocity. J. Number Theory, Vol. 200 (2019), pp. 295-315.
[10] Overkamp, O. Jumps and motivic invariants of semiabelian Jacobians. Int. Math. Res. Not., Vol. 2019, Issue 20, pp. 6437–6479, 2019.
Curent teaching:
Lecture Linear Algebra I (Internal website)
Past teaching:
Exercise classes for Analysis II, Linear Algebra I and II (Düsseldorf),
Tutorials in Metric Spaces and Complex Analysis, Linear Algebra, Rings and Modules, Number Theory, Topology (St. Peter's College, Oxford),
Exercise classes in Algebraic Number Theory, Elementary Number Theory, Linear Algebra I and II, Elementary Geometry; Hauptseminar "Class Field Theory" (Hannover)
Exercise classes in Mathematical Methods, Group Theory (Imperial)
Exercise classes for Algebraic Number Theory (Tübingen)