Office: Venture IV 408

Email: Noboru.Matsuda[at]
Tel: 919-513-6528
Postal: 890 Oval Drive, Engineering Building II, Raleigh, NC 27695

Research Interest

I am an associate professor of computer science and the director of the Innovative Educational Computing Laboratory at North Carolina State University. I am also an affiliate of the Center for Educational Informatics and a member of the Digital Transformation of Education cluster at the NCSU Chancellor's Faculty Excellence Program.

My primary research focus is on the technology innovation and integration to advance the sciences of computing and human/machine learning.

To make a breakthrough innovation, I value mathematics principles behind the machine learning technologies and AI in general. I am interested in understanding the underlying computation to realize desired technologies to improve the future of education. On that account, I am an AI tech-engineer to build transformative educational technologies.

I am interested in innovating cutting-edge Artificial Intelligence (AI) technologies for students to learn, teachers to teach, and researchers to understand how people learn (and, more importantly, fail to learn!). I study the transformative theory of learning and teaching to understand how people learn and how people should be taught. I am therefore a computer scientist acting as a learning scientist working on the empirical data collected from field studies conducted with the learning technologies that I invent. I also recognize myself as a lifelong practitioner to improve education.

My scholarly expertise thus spans computer science, learning science, cognitive science, and education. Follow this link for an extended research statement (PDF)


See our lab page for full descriptions of current and past projects: The Innovative Educational Computing Lab

SimStudent is a computational model of learning cognitive skills. SimStudent learns cognitive skills to solve target problems through guided problem-solving and demonstrations. It is an realization of programming by demonstration using the inductive logic programming as a part of its backbone technology. Applications of SimStudent include intelligent authoring (to facilitate authoring of cognitive tutors), teachable agent (to advance the theory of learning by teaching), and learning simulation (to understand how students learn). Learn more...

The goal of the PASTEL (Pragmatic methods to develop Adaptive and Scalable Technologies for next generation E-Learning) project is to develop evidence-based methods for efficient and practical learning engineering. In particular, we are interested in developing advanced technologies to build adaptive online course. Learn more...

GRAMY & AGT: Advanced Geometry Intelligent Tutoring System

How to teach geometry theorem proving with construction? The "construction" here is to add segments into a problem figure using compasses and a straightedge as part of a proof. Two major findings from this project include: (1) Construction can be done algorithmically (c.f., heuristic knowledge for construction a la Polya). (2) Students who were taught proofs with construction as a forward chaining procedure showed better proof-writing performance than those who were taught the backward chaining procedure.