First workshop on NLP for Positive Impact
This workshop was postponed, please check out our 2021 website: https://sites.google.com/view/nlp4positiveimpact2021
Description
The growing prevalence of language-oriented AI systems has created opportunities for NLP and other AI technologies to have a major positive social impact. Much existing work on NLP for social good focuses on detecting or preventing harm, such as classifying hate speech or identifying signs of depression. However, NLP research also has the potential for positive proactive applications, such as increasing user well-being or fostering constructive conversations.
This workshop aims to promote NLP research that will positively impact society, specifically focusing on proactive and responsible methods. We will encourage submissions from areas including (but not limited to):
Positive conversation generation: models of conversation generation that promote constructive interactions or promote alternate perspectives; analyses of conversations with successful positive outcomes
Online prosocial behavior: models for positive rephrasing of online content; analyses of implied or stated altruism, empathy, or other prosocial behavior online
Well being: NLP techniques to improve the well-being of users, through (therapeutic) interaction or collaborative rewriting
Positive information sharing: natural language generation (NLG) of alternate perspectives to articles; contextual generation for (ambiguous) statements; mitigation of filter bubbles through generative methods
Interdisciplinary perspectives: perspectives and analyses from other fields (e.g., social sciences, philosophy) on the potential positive impacts of NLP techniques; cases studies of successful NLP applications
Other NLP for social good: e.g., NLP for disaster relief, models for helping users with cognitive or mental disabilities, etc.
Part of the workshop will promote investigation in two more focused challenges: (1) generating constructive and empathetic conversation, and (2) fostering compassion and perspective-taking in online platforms. The organizers have been collecting data for these challenges and will release the full data before the first call for papers.
Speakers
University of Washington/Allen Institute for Artificial Intelligence
Microsoft Research
Carnegie Mellon University
Facebook AI Research
Organizing Committee
Maarten Sap, University of Washington
Anjalie Field, Carnegie Mellon University
Michel Galley, Microsoft Research
Hannah Rashkin, University of Washington
Lianhui Karen Qin, University of Washington
Bill Dolan, Microsoft Research
Steering Committee
Yejin Choi, University of Washington / Allen Institute for Artificial Intelligence
Jianfeng Gao, Microsoft Research
Dan Jurafsky, Stanford University
Yulia Tsvetkov, Carnegie Mellon University
Jason Weston, Facebook AI Research