The proprietary controller is utilized to track augmented 6D lift-off trajectories at randomly sampled poses. The augmentations are realized through reference pose jumps of up to 0.8mm or 0.8° per axis. This data is used to train a GRU-based neural controller via behavior cloning. This neural controller is evaluated after this section.
Here, we evaluate the learned GRU-based neural controller. It is trained solely on 10000 lift-off trajectories (one is illustrated above).
1) We first showcase (a) qualitative robustness, (b) stability to discontinuous reference pose jumps and (c) stability to continuous reference pose oscillations.
2) Next, we demonstrate generalization to (a) large circles (30mm radius) with different velocities/frequencies and (b) a random trajectory over the whole tile with different velocities.
Here we demonstrate qualitative robustness of the behavior-cones neural controller. Despite that the neural controller has never transportation of weights or force perturbations, it is capable of carrying some weights and remains
small weight (30g)
medium weight (125g)
large weight (325g)
manual forces
For each reference pose jump, the mover is at a randomly sampled starting position. Then a discontinuous reference pose step is performed in which the reference pose is abruptly changed by up to 0.8mm or 0.8deg per axis. After that, the controllers have time to recover from that discontinuous jump.
Here, we utilize oscillations with as set of frequencies from 0.1hz up to 25.6hz and an amplitude of 0.5mm or 0.5°. This is done independet on each axis to empirically obtain Bode plots to demonstrate stability to dynamic continuous perturbations.
Here, we track a circular trajectory with radius of 30mm. We utilize different frequencies of 0.25hz, 0.5hz, 1hz, and 2hz.
r=30mm, f=0.25hz
r=30mm, f=0.5hz
r=30mm, f=1hz
r=30mm, f=2hz
Here, we track a random trajectory with three different velocities.
Overview of random trajectory
Overview of root mean squared error
Overview of root mean squared error