Multimodal Trajectory Prediction via Topological Invariance for Navigation at Uncontrolled Intersections

Abstract

We focus on decentralized navigation among multiple non-communicating rational agents at uncontrolled intersections, i.e., street intersections without traffic signs or signals. Avoiding collisions in such domains relies on the ability of agents to predict each others' intentions reliably, and react quickly. Multiagent trajectory prediction is NP-hard whereas the sample complexity of existing data-driven approaches limits their applicability. Our key insight is that the geometric structure of the intersection and the incentive of agents to move efficiently and avoid collisions (rationality) reduces the space of likely behaviors, effectively relaxing the problem of trajectory prediction. In this paper, we collapse the space of multiagent trajectories at an intersection into a set of modes representing different classes of multiagent behavior, formalized using a notion of topological invariance. Based on this formalism, we design Multiple Topologies Prediction (MTP), a data-driven trajectory-prediction mechanism that reconstructs trajectory representations of high-likelihood modes in multiagent intersection scenes. We show that MTP outperforms a state-of-the-art multimodal trajectory prediction baseline (MFP) in terms of prediction accuracy by 78.24% on a challenging simulated dataset. Finally, we show that MTP enables our optimization-based planner, MTPnav, to achieve collision-free and time-efficient navigation across a variety of challenging intersection scenarios on the CARLA simulator.

Overview of our Approach

Multiple-Topologies-Prediction.mp4

Navigation at an Unsignalized Intersection

We have compared our model with two baselines: Autopilot (a heuristic-based controller from CARLA) and model predictive control (MPC). While we set the number of agents from two to four, we keep the ego-agent under control of the model at the south. The other vehicles are controlled by Autopilot provided from CARLA.

MTPnav decides to speed up early on to avoid any close interaction with the Agent1.

MTPnav yields to Agent2 and makes the decision of passing before Agent1.

Failure Cases of MTP

We also provide some failure cases of MTP in four agents cases.

Predictions deviates from reference path.

Ego-agent collides with other vehicles stuck at the intersection due to a collision among them.

Ego-agent collides with other vehicle waiting for the agent coming from the top to pass first.