3D Deformable Object Manipulation using Fast Online Gaussian Process Regression

Project Summary

we present a general approach to automatically visual-servo control the position and shape of a deformable object whose deformation parameters are unknown. The servo-control is achieved by online learning a model mapping between the robotic end-effector's movement and the object's deformation measurement. The model is learned using the Gaussian Process Regression (GPR) to deal with its highly nonlinear property; and once learned, the model is used for predicting the required control at each time step. To overcome GPR's high computational cost while dealing with long manipulation sequences, we implement a fast online GPR by selectively removing uninformative observation data from the regression process. We validate the performance of our controller on a set of deformable object manipulation tasks and demonstrate that our method is able to achieve effective and accurate servo-control for general deformable objects with a wide variety of goal settings.