Although mind mapping was not found to increase short-term recall of domain-based information or critical thinking compared to SNT, a brief introduction to mind mapping allowed novice MM subjects to perform similarly to SNT subjects. This demonstrates that medical students using mind maps can successfully retrieve information in the short term, and does not put them at a disadvantage compared to SNT students. Future studies should explore longitudinal effects of mind-map proficiency training on both short- and long-term information retrieval and critical thinking.
The theoretical basis of constructivism is depicted in Figure 1. In medical school, academic information is available to the medical student through reading, visualizing, or listening. Irrespective of the mechanism, information enters the mind of the student, who is actively trying to make sense of the information. Because the sensemaking of the student may be very different from that of the professor presenting the information,[12] one of the assumptions underlying constructivist theory is that the student will integrate the information into a personal framework so that it will be retained,[8] which results in meaningful learning.
In graduate medical education, West et al[17] used the concept map learning strategy developed by Joseph Novak[18] in resident physicians, and studied the validity and reliability of concept mapping assessment (CMA). They found that concept maps could be scored reliably and CMA could measure changes in the conceptual framework of physicians[17].
Mind mapping was developed by Tony Buzan[19] and the inspiration for this strategy arose from the notebooks of Leonardo da Vinci[20]. Mind maps, like da Vinci's notes, are multi-sensory tools that use visuospatial orientation to integrate information, and consequently, help students organize and retain information[21, 22].
Mind maps can be used as a teaching tool to promote critical thinking in medical education by encouraging students (adult learners) to integrate information between disciplines and understand relationships between the basic and clinical sciences[21]. The ability to integrate information by finding valid relationships between concepts allows students who construct either mind maps or concept maps to reach a metacognitive level[15]. However, the added dimensions of pictures and colors that are unique to mind maps have not only been shown to facilitate memory,[23] but may appeal to a wide range of students withvisual- and linear-oriented learning styles. Consequently, the advantage of using mind maps in medical education is that this strategy may benefit more students with diverse learning styles.
Both mind maps and concept maps allow students to recognize the intra- and inter-relationships between concepts, which reflects the kind of real-world thinking predominant in the clinical setting[24].
Farrand et al[25] were the first group to investigate the potential role of mind mapping in medical education. These researchers explored whether the mind map learning technique was superior to traditional note taking in both short- and long-term factual recall of written information in medical students. They found that the mind map technique significantly improved long-term memory of factual information. Additionally, they found significant differences in self-reported motivation with the mind map group having lower levels of motivation than the self-selected study group. Although not supported by other literature, this finding may be explained by the fact that students were not given adequate time to adjust to using the mind map technique, and therefore, may have felt less comfortable using it. Although the results of the study were promising, the authors did not address critical thinking. Consequently, studies exploring the relationship between mind mapping and critical thinking are needed before the usefulness of mind mapping can be fully supported in medical education.
Wickramasinghe et al[26] were the second group to investigatethe effectiveness of mind maps in medical education. Using a similar study design as that used by Farrand et al,[25] these authors assigned new entry medical students into 2 groups: mind map and self-selected study groups. The authors also developed a method to score the mind maps based on structure and content; however, they did not describe the method nor did they provide any data to support it[26]. The authors reported that there was no significant difference in scores between groups[26]. They did, however, report that all of the subjects in the mind map group perceived that mind maps are useful for memorizing information. Based on their findings, the authors concluded that mind mapping may not be effective in improving retention of short-term information[26].
Although concept maps and mind maps have similar characteristics, they are fundamentally different in design. Concept maps are devoid of color and pictures, and are constructed in a top-to-bottom hierarchy. Mind maps, in contrast, use a central theme in the middle of a page with categories and subcategories that radiate peripherally, thus making them truly non-linear. The cross-links among categories highlight their intrinsic relationships, and allow the student to compare and contrast information. Unlike concept maps, mind maps are multisensory--they include color and pictures, which facilitate the conversion of information from short- to long-term memory[23, 27]. An example of a mind map created by a medical student in this study can be found in Figure 2.
Student mind map. An example of a mind map from one of the medical students in this study. Note the judicious use of pictures and colors, along with hierarchical organization positioned radially. Note how different colors were used to indicate different hierarchies (eg, green is primary hierarchy, blue is secondary, aqua is tertiary, etc.). In addition to the above example, other student mind maps have been published elsewhere[22, 28].
Since critical thinking is dependent upon both content (domain) knowledge and problem familiarity,[15] mind mapping may facilitate critical thinking because it fosters student retention of factual information, as well as relationships between concepts[25]. Currently, however, there are no data to support the hypothesis that mind maps facilitate critical thinking in medical students.
The secondary purpose of this study was to determine whether mind maps were superior to SNT in the short-term recall of factual information. Mind map depth was assessed using the previously published Mind Map Assessment Rubric[28].
An a priori power analysis[29] using a one-tailed t-test revealed a minimum sample size of 70 subjects. This calculation was based on the following: effect size d = 0.8, alpha = 0.05, and power = 0.95. The large sample size (N = 131) assumes a normal distribution of the population, and therefore, parametric statistics were used to analyze the data. The sample of convenience consisted of first-year medical students who voluntarily participated in this study.
The independent variable in this study was the note-taking strategy used by the medical students. Subjects were randomly assigned to 2 note-taking groups: a standard note-taking (control) group and mind map (experimental) group. The design of the study is outlined in Figure 3.
Subjects in the control group used standard note-taking (SNT) strategies that they used throughout their academic careers to learn the text passage. SNT is defined as any study strategy that does not rely on reorganizing information using architecture commonly seen in a concept map or mind map[25]. SNT is a process whereby notes are arranged in a hierarchy from the top of a page to the bottom, or from left to right, without any hierarchy[30]. Subjects in the experimental (mind map) group were given a 30-minute presentation on mind maps and then instructed to create mind maps in order to take notes on the material in the text passage.
After taking text passage quiz 1, subjects in the mind map group were given a presentation on mind maps and how to construct them, while at the same time, subjects in the control group were sequestered for a break and could not leave the lecture hall. After 30 minutes, all subjects were then re-exposed to the text passage and instructed to take notes using either standard note-taking (SNT) or mind maps (MMs), depending on their group assignment. All subjects were given 25 minutes for note-taking and at the end of this time period, all passages and notes were collected. This was followed by the administration of math quiz 2 in order to again discourage the simple recall of information by the subjects. After math quiz 2, all subjects were simultaneously administered text passage quiz 2 based upon the passage. This quiz consisted of 10 multiple-choice questions: the same 5 questions from quiz 1 plus an additional 5 questions. This was done to see if the students retained the factual information and to address potential testing effects (ie, higher scores due to repeated testing exposure).
38c6e68cf9