MILO BECHTLOFF WEISING
BACKGROUND INFORMATION
I am a PhD graduate in Mathematics from UC Davis. With my advisor Monica Vazirani, I studied the representation theory and combinatorics of Double Affine Hecke Algebras in type GL. I am especially interested in the stable limits of objects appearing in Cherednik theory like the non-symmetric Macdonald polynomials. I am currently a postdoctoral associate at Virginia Tech working with Daniel Orr. 
I am a PhD graduate in Mathematics from UC Davis. With my advisor Monica Vazirani, I studied the representation theory and combinatorics of Double Affine Hecke Algebras in type GL. I am especially interested in the stable limits of objects appearing in Cherednik theory like the non-symmetric Macdonald polynomials. I am currently a postdoctoral associate at Virginia Tech working with Daniel Orr. 
CONTACT
CONTACT
Email me at milojbw[at]gmail[dot]com
Email me at milojbw[at]gmail[dot]com
PUBLICATIONS
PUBLICATIONS
Publication 1
Publication 1
Milo J. Bechtloff Weising. “Stable-limit non-symmetric Macdonald functions”. En-
glish. In: Algebr. Combin. 7.6 (2025), pp. 1845–1878. issn: 2589-5486. doi: 10.5802/
alco.395
Publication 2
Publication 2
Milo Bechtloff Weising. “Stable-Limit Non-symmetric Macdonald Functions in Type A”.
In: Sém. Lothar. Combin. 89B.56 (2023)
Publication 3
Publication 3
Milo Bechtloff Weising. “Murnaghan-Type Representations of the Elliptic Hall Algebra”. 
Milo Bechtloff Weising. “Murnaghan-Type Representations of the Elliptic Hall Algebra”. 
In: Sém. Lothar. Combin. 91B.57 (2024) 
In: Sém. Lothar. Combin. 91B.57 (2024) 
Publication 4
Publication 4
Milo Bechtloff Weising. “Higher Rank Macdonald Polynomials”.
Milo Bechtloff Weising. “Higher Rank Macdonald Polynomials”.
In: Sém. Lothar. Combin. 93B.125 (2025). 
In: Sém. Lothar. Combin. 93B.125 (2025). 
PREPRINTS
PREPRINTS
Preprint 1
Preprint 1
Milo Bechtloff Weising, Daniel Orr. “Stable-limit partially symmetric Macdonald functions and parabolic flag Hilbert schemes”. In: (2024). arXiv:2410.13642 [math.CO] url: https://arxiv.org/abs/2410.13642.
Milo Bechtloff Weising, Daniel Orr. “Stable-limit partially symmetric Macdonald functions and parabolic flag Hilbert schemes”. In: (2024). arXiv:2410.13642 [math.CO] url: https://arxiv.org/abs/2410.13642.
Preprint 2
Preprint 2
Milo Bechtloff Weising and Alexander E. Black. “Saturation for Non-Symmetric
Milo Bechtloff Weising and Alexander E. Black. “Saturation for Non-Symmetric
Preprint 3
Preprint 3
Milo Bechtloff Weising. “Artin Symmetric Functions”. In: (2024). arXiv:2409.09643 [math.NT] url: https://arxiv.org/abs/2409.09643.
Preprint 4
Preprint 4
Milo Bechtloff Weising. “Murnaghan-Type Representations of the Positive Elliptic Hall Algebra”. In: (2024). arXiv:
Milo Bechtloff Weising. “Murnaghan-Type Representations of the Positive Elliptic Hall Algebra”. In: (2024). arXiv:
2405.00756 [math.CO] url: https://arxiv.org/abs/2405.00756.
Preprint 5
Preprint 5
Milo Bechtloff Weising. “Double Dyck Path Algebra Representations From DAHA”. In: (2024). arXiv:
Milo Bechtloff Weising. “Double Dyck Path Algebra Representations From DAHA”. In: (2024). arXiv:
Preprint 6
Preprint 6
Milo Bechtloff Weising. “Almost Symmetric Schur Functions”. In: (2024). arXiv:
Milo Bechtloff Weising. “Almost Symmetric Schur Functions”. In: (2024). arXiv:
Preprint 7
Preprint 7
Milo Bechtloff Weising. “Delta Operators on Almost Symmetric Functions”. In: (2024).
Milo Bechtloff Weising. “Delta Operators on Almost Symmetric Functions”. In: (2024).
Preprint 8
Preprint 8
Milo Bechtloff Weising. “Multi-Symmetric Schur Functions”. In: (2025). url: https://arxiv.org/abs/2502.08738.
Milo Bechtloff Weising. “Multi-Symmetric Schur Functions”. In: (2025). url: https://arxiv.org/abs/2502.08738.
Preprint 9
Preprint 9
Milo Bechtloff Weising. “Wreath Generalization of Littlewood Reciprocity”. In:
Milo Bechtloff Weising. “Wreath Generalization of Littlewood Reciprocity”. In:
Preprint 10
Preprint 10
Milo Bechtloff Weising. “Higher Order Bell Symmetric Functions”. In: (2025). url:
Milo Bechtloff Weising. “Higher Order Bell Symmetric Functions”. In: (2025). url:
CV
CV
Thesis
Thesis