He was born on March 24, 1993 in Isola del Liri, Italy and he's living in Rome. Currently he's a PhD student in Electronic Engineering and his research filed includes satellite, transport protocol and networking systems.
He's very precise and demanding about work and life in general. He likes sincerer people, in fact he has few but good friends. His interests cover music, cinema, photography and arts, he likes opera and theatre as well. In the spare time he likes to play drums, bass and also to cook.
His musical interests range from Metal, Rock to Blues and Jazz but also Classical. He is interested in Sci-Fi novels but also in historical books and documentaries, it can be said that the past fascinates him.
One of his wishes is to travel all around the world and to explore all cultures and the beautiful of the nature. At the same time he's attracted to the space too, and all the things it hides. In fact, he's attracted to space exploration and he hopes to be alive when extraterrestrial lives are discovered !
Mattia Quadrini currently works as a R&D Engineer at the Romars s.r.l. He The main research interests are focused on Satellite Communications and design of protocols and technologies for heterogeneous networks.
He obtained the PhD in Electronic Engineering at University of Rome “Tor Vergata” in 2023 where he graduated cum laude in 2019 in ICT and Internet Engineering. From May to October 2019 he was granted for an internship with “Consorzio Nazionale Interuniversitario per i Trasporti e la Logistica” (NITEL). The addressed activities were in the frame of the ESA ARTES AT project VIBeS (IMPLEMENTATION OF VIRTUALISED NETWORK FUNCTIONS (VNFS) FOR BROADBAND SATELLITE NETWORKS) and specifically: the configuration of Virtual Network Functions (VNFs) for the performance optimization of the web- traffic over integrated satellite links in 5G networks and the validation of a “QUIC-proxy” solution. He has been involved in ESA research projects in the telecommunication field. During its Ph.D. program he recently started a collaboration in the frame of the SATELLITE BACKHAULING PROTOTYPE FOR FUTURE NARROW BAND INTERNET OF THINGS (NB-IOT) NETWORKS (ARTES AT 6B.041) project.
He is author of some scientific publications in international journals and conferences.
The fifth generation mobile network is now stated, by introducing a revolutionary service based architecture, which exploits hardware virtualization techniques. This has allowed mobile network operators to implement a decentralized network archi- tecture, where the network functions of the 5G core network can be deployed across multiple physical nodes spread in di↵erent locations. On the other hand, starting from Release-16, the pressure of the industries involved in the 3GPP community, to- gether with the research activities (both from the industries and from the academy), paved the way to the integration of the Non-Terrestrial Networks (NTN) with 5G systems which are deployed based on the “terrestrial” infrastructure inherited from the previous technologies. The studies conducted in Release-16 are the reference to evaluate possible adaptation to the network architecture including the introduction of new network functions, protocols, and procedures to support the NTN. On the other side, the characteristics of the satellite make it an ecient, and in some cases unique, solution to improve the QoS/E of the individual user or concerning the entire service (i.e., a network slice) in a target scenarios, while promoting the Satellite as a Service (SATaaS) paradigm. The ideal solution is to dynamically enable the satellite segment through a chain of virtual network functions to provide connectivity and services in di↵erent points of the network, which can be the access, backhaul or transport networks. The integration process is therefore not straightforward, rather it requires an analysis of the impact, adaptations at the architecture and protocol level both on the UE terminal and on the operator side. In this direction, this work try to cover all these aspects, based on the result of various research activities addressed in di↵erent ESA projects in which the author collaborated during his PhD period.
Since it was introduced in the telecommunication system, the satellite component played an important role for both broadcasting of multimedia contents and guaran- teeing large coverage including areas unserved by terrestrial system such as ocean. However, the optimization of TCP/IP communications over satellite links remains an open issue: it is well known that geostationary satellite systems present physical characteristics different from the terrestrial wired and wireless systems. High delay introduced by physics leads to some problems when using TCP as transport protocol, because it was developed in a terrestrial wired environment with different require- ments. in general the direct adaptation of web technologies over satellite scenarios is critical. A largely adopted solution is based on the deployment of middle boxes, called Performance-enhancing proxy (PEP) tailored to accelerate IP-based transfers. PEP architectures have as drawback the violation of the end-to-end semantic and the lack of feasibility in handling different traffic categories and protocols, with different performance requirements. The new generation of cellular networks (5G) can help on above limitations by enabling new technologies and revolutionary deployment paradigms.
Specifically the virtualization allows to abstract physical network elements (i.e. routers, firewall, ACL, others) in software and consequentially grouping different network services in a single dedicated general purpose hardware. These services can be converted in specific Virtual Network Functions (VNFs) and could be deployed and distributed in the network through an "orchestrator". On the other hand, the concept of "slicing" allows to deploy a number of logical networks, in compliancy with 5G specifications, offering tailored communication services.
In this framework the satellite systems could leverage ad-hoc VNFs to support an efficient integration into 5G use-cases with the aim to bring different added-value services (i.e. service-continuity, bandwidth bonding, global coverage, broadcasting, etc) without impairing end-to-end TCP/IP performance. In this way, a virtual-PEP element as group of distributed VNFs,replaces the physical-PEP with the integration of both legacy and new functionalities by considering the newest and interesting web-technologies as QUIC transport protocol, presented by Google and currently under development by IETF community, that will represent the future HTTP3/0. The main goal of this work is to implement a component of the virtual-PEP (v-PEP) based on QUIC-technologies to allow the management of session level tunnels allowing a smart exploitation of a satellite-enabled hybrid backhaul QUIC tunnels guaranteeing the 0-latency feature in the data transfer over satellite, while allowing to work with traffic aggregations with easily traceable dynamics and similar perfor- mance requirements.
A terrestrial link is considered as a default path for the communication, while a satellite link acts as a supplementary one. When a problem occurs on the default path one or multiple tunnels can be moved to the alternative one without experience loss of connectivity or interruptions. A testbed is deployed in a virtual environment where validation and performances tests are proposed to demonstrate the feasibility of the work and to evaluate overall performances.
The work is structured as follows:
Chapter 1 briefly introduces the 5G network components, the concept of VNF and finally describes the role of PEP and its working principles
Chapter 2 justifies the proposed technology for the development of the vPEP component introducing the concept of QUIC-tunnel
Chapter 3 describes the final testbed, components and the reference scenario
Chapter 4 presents validation tests
Chapter 5 presents performance tests
Chapter 6 presents conclusions and suggestions for future works
Nell'attuale scenario ICT (information and Communications Technologies) lo sfruttamento di servizi basati sul cloud ha portato al rapido sviluppo delle reti di data centers, introducendo nuove architetture e concetti di gestione sempre più efficienti in termini di consumo di energia, prestazioni garantite (latenza minima), allocazione di risorse. L'incremento dei servizi in cloud rende tuttavia centrale il problema della scalabilità dei data centers, in termini di capacità di calcolo ed archiviazione ed in termini di prestazioni nell'erogazione dei servizi. Da questo punto di vista, il trend crescente della quantità di dati trasferiti, in particolare all'interno del data center), richiede una penetrazione delle tecnologie fotoniche sempre più all'interno delle risorse hardware (servers e storage) , rispetto allo scenario attuale che fa ancora ampio uso di tecnologia Ethernet su rame nei data center più diffusi.
L'aumento di tecnologie fotoniche all'interno del data center sta portando ad un aumento della quantità di cavi in fibra necessari per i collegamenti tra le risorse hardware. Contemporaneamente, la fase in corso di continua miniaturizzazione dell'hardware fotonico (transceivers) indurrà un ulteriore addensamento di fibre. Il risultato dell'esplosione del numero di fibre potrà avere effetti negativi sull'efficacia del condizionamento climatico del data center, che è la principale causa di consumo energetico che si attesta per il 2% del consumo energetico globale (fonte: UE). In aggiunta, l'aumento della quantità di fibre affasciate induce una complicazione nelle architetture di interconnessione.
Questo lavoro di tesi propone di investigare le prestazioni preliminari di collegamenti wireless ottici punto – punto (P – P) destinati ad applicazione nelle future reti di data center; l'impiego di collegamenti wireless ottici all'interno di un DC permette di abbattere costi di infrastruttura mantenendo alto il livello di prestazione [3] grazie al dominio ottico dei segnali, portando inoltre verso il risparmio energetico.
Il lavoro ha riguardato l’installazione di un sistema di trasmissione ottico wireless ottenendo un tratto del canale in spazio libero senza l’uso di fibre tra sorgente e ricevitore. Il lavoro di tesi si concentra sulla analisi degli effetti delle perturbazioni ambientali intrinseche di una infrastruttura data center su un canale ottico wireless (OWC) utilizzato per trasferimento dati.
L’intenzione è stata di ricreare una situazione tipica di un data center nel quale convivono correnti di aria calda prodotte dalle ventole dei servers e correnti di aria fredda prodotte dal sistema di raffreddamento, e studiare gli effetti che questo tipo di perturbazioni hanno sulle prestazioni del canale ottico wireless.
Nello specifico, le perturbazioni riprodotte in modo controllato sono di diverso carattere:
Irraggiamento
Flussi di aria
Calda
Fredda
Calda e fredda combinate
Le perturbazioni, riprodotte con dei dispositivi assimilabili alle ventole dei servers, sono da considerarsi un caso estremo rispetto alla realtà dei data center (DC): i flussi di aria indotta negli esperimenti hanno un impatto maggiore in termini di pressione e temperatura sul fascio di luce e rispetto il caso DC negli esperimenti si è perturbato direttamente il canale.
Le fasi del lavoro in laboratorio possono essere riassunte nel modo seguente:
Costruzione di un setup inziale formato da una sorgente LASER, canale di trasmissione, analizzatore di spettro ottico
Allineamento del sistema
Calcolo delle potenze in situazioni di equilibrio
Calcolo delle potenze in situazioni di perturbazione
Analisi della robustezza del canale ottico wireless con flusso dati in rete locale
Nel Capitolo 2 verranno descritte le caratteristiche principali del Free Space Optics, la sua storia e le sue applicazioni nei giorni nostri; verranno chiariti i vantaggi e gli svantaggi che questo tipo di tecnologia porta in ambito DC (Capitolo 3); verrà proposto il setup su cui sono state svolte le prove (Capitolo 4 – Capitolo 5) ed infine verranno elencati e discussi i risultati derivanti dalle varie tipologie di perturbazione (Capitolo 5).