Ромб (грец. ρομβος) — це паралелограм, у якого всі сторони рівні.
Ромб, сторони якого утворюють прямий кут, називають квадратом.
Діагоналі ромба перетинаються під прямим кутом. Діагоналі ромба є бісектрисами його кутів
Кожен ромб має дві діагоналі, що з'єднують пари протилежних вершин, і має дві пари паралельних сторін. Використовуючи правила конгруентних трикутників, можна довести, що ромб є симетричним відносно кожної з його діагоналей. Звідси випливає, що ромб має наступні властивості:
Це паралелограм, діагоналі якого розділяють внутрішній кут
Протилежні кути ромба рівні.
Діагоналі ромба перетинаються під прямим кутом, точка перетину є серединою кожної діагоналі.
Діагоналі ромба є бісектрисами кутів, з яких вони проведені.
Сторони ромба попарно паралельні.
Точка перетину діагоналей називається центром симетрії ромба.
В будь-який ромб можна вписати коло.
Центром кола, вписаного в ромб, є точка перетину його діагоналей.
Сума квадратів діагоналей дорівнює квадрату сторони, помноженому на чотири: AC2 + BD2 = 4AB2