У геометрії, площа, що замикає коло радіусом r дорівнює π r2. У цій формулі грецька літера π є математичною сталою, що приблизно дорівнює числу 3,14159…, і яке дорівнює відношенню довжини окружності кола до його діаметра.
Одним із методів отримання цієї формули, що бере початок із роботи Архімеда, у якій коло розглядається як границя послідовності правильних багатокутників. Площа правильного багатокутника дорівнює половині його периметру помноженого на відстань від його центру до сторін, а відповідна формула (що площа є половиною периметру помноженого на радіус, тобто. 1⁄2 × 2πr × r) полягає в знаходженні границі для кола.
Хоча, часто в не формальному контексті вживають вислів площа кола, строго кажучи до внутрішньої частини кола вживають термін круг (диск), у той час як коло це лише межа описана довкола, і яка по суті є кривою, що не займає ніякої власної площі. Тому, площа круга є більш точним висловом, якщо мається на увазі площа, що обмежена колом.
Сучасні математики можуть отримати площу за допомогою методів інтегральних обчислень або з складнішої гілки цих методів, аналізу функцій дійсних змінних. Однак, площу круга вивчали в Стародавній Греції. Евдокс Кнідський у V столітті до н. е. знайшов, що площа круга є пропорційна квадрату його радіуса.[1] Архімед у своїй книзі Вимірювання кола[en] використовував засоби евклідової геометрії аби показати, що площа в середині кола, дорівнює площі прямокутного трикутника основа якого має довжину, що дорівнює окружності кола і висоту, що дорівнює його радіусу. Довжина окружності дорівнює 2πr, а площа трикутника є половиною добутку довжини основи трикутника на висоту, що в результаті дорівнює площі круга π r2.
Різні докази історично використовували аби встановити рівняння A = π r 2 {\displaystyle A=\pi r^{2}} із різною ступеня математичної строгості. Найвідоміший з них є архімедовий метод вичерпування, що є одним із ранніх використань математичного поняття границі, а також основою Аксіоми Архімеда, що залишається частиною стандартного аналітичного пояснення системи дійсних чисел. Оригінальний доказ, який робив Архімед не є настільки суворим за сучасними стандартами, оскільки він припускає можливим порівнювати довжину дуги кола до довжини січної і дотичної лінії, і подібними твердженнями про площу, як геометрично очевидне.
Припустимо, що площа описана колом є меншою ніж площа T трикутника. Нехай D задає ту кількість, якої не вистачає. Опишемо квадрат довкола кола, так що середні точки кожної з його граней лежать на колі. Якщо загальна площа областей між колом і квадратом, G4, є більшою за D, відріжемо кути квадрата за допомогою дотичних до кола аби утворився описаний восьмикутник, і продовжимо відкидати кути доки площа між цим багатокутником і колом не стане меншою ніж D. Площа багатокутника, Pn, повинна бути меншою за T.
Головна сторінка
Трикутники
трикутник
Більше
Редагувати це меню на вкладці "Сторінки"
Показати
Площа правильного багатокутника є половиною добутку його периметру на апофему. Зі збільшенням кількості сторін правильного багатокутника, він наближується до кола, а апофема наближується до радіуса. Таким чином створюється припущення що площа круга є половиною довжини окружності, що обмежує круг помноженої на його радіус.[2]
Зазначені круг і трикутник мають однакову площу.
Відповідно до архімедових тверджень Archimedes, (c. 260 BCE), порівняємо площу, яка замикається колом, із прямокутним трикутником, основа якого має довжину рівну окружності кола і висоту рівну його радіусу. Якщо площа кола не дорівнює площі трикутника, тоді вона повинна бути або більшою або меншою. Відкидаємо кожен з цих випадків як суперечні, отже, рівність єдиний можливий варіант.
Припустимо, що площа C, яка замикається колом, більша ніж площа T = 1⁄2cr трикутника. Тоді нехай E позначає ту площу, що є надлишком. Впишемо в коло квадрат, так, що його чотири кута лежать на колі. Між квадратом і колом існує чотири сегменти. Якщо загальна площа цих областей, G4, більша ніж E, розділимо кожну дугу навпіл. Між колом і квадратом утворюється вписаний восьмикутник, що утворює вісім сегментів із меншою загальною площею, G8. Продовжимо розбивати доки площа довкола, Gn, не стане меншою ніж E. Тепер площа вписаного багатокутника, Pn = C − Gn, має бути більшою за площу трикутника.
Використання числення, дозволяє розраховувати площу поступовим чином, розділяючи круг на концентричні кільця, за принципом шарів цибулі. Це є методом інтеграції поверхні[en] в двох вимірах. Для нескінченно тонкого кільця «цибулі» з радіусом t, площа яку воно займає дорівнює 2πt dt, довжина окружності кільця помножується на його нескінченно малу ширину (можна апроксимувати таке кільце прямокутником із шириною=2πt і висотою=dt). Таким чином ми отримаємо елементарний інтеграл для диску радіусом r.