Marcus A. Triplett

I'm a postdoctoral research scientist at Columbia University working with Liam Paninski on computational methods for controlling and mapping neural circuits using holographic optogenetics. I also develop statistical techniques for analysing high-dimensional neural population activity. Previously, I completed my PhD in Computational Neuroscience with Geoff Goodhill at the University of Queensland, Australia. Before that, I obtained a BSc in Computer Science and Mathematics at the University of Auckland, New Zealand, where my primary research interest was in logic.


Columbia University Affiliations:
Grossman Center for the Statistics of Mind
Center for Theoretical Neuroscience
Zuckerman Mind Brain Behavior Institute
Department of Statistics

NEW: I am now funded by an NIH BRAIN Initiative K99/R00 Advanced Postdoctoral Career Transition Award to continue developing computational methods for holographic optogenetics and voltage imaging! 


Publications

Google Scholar

Computational Neuroscience

M. A. Triplett, M. Gajowa, H. Adesnik & L. Paninski. (2024). Bayesian target optimisation for high-precision holographic optogenetics. Advances in Neural Information Processing Systems (spotlight award). [Link]

B. Antin*, M. Sadahiro*, M. Gajowa, M. A. Triplett, H. Adesnik & L. Paninski. (2024). Removing direct photocurrent artifacts in optogenetic connectivity mapping data via constrained matrix factorization. PLOS Computational Biology 20(5): e1012053. [Link]

M. A. Triplett*, M. Gajowa*, B. Antin, M. Sadahiro, H. Adesnik & L. Paninski. (2022). Rapid learning of neural circuitry from holographic ensemble stimulation enabled by model-based compressed sensing. bioRxiv 2022.09.14.507926. [Link]

M. A. Triplett & G. J. Goodhill (2022). Inference of multiplicative factors underlying neural variability in calcium imaging data. Neural Computation 34(5), 1-27. [Link]

M. A. Triplett, Z. Pujic, B. Sun, L. Avitan & G. J. Goodhill. (2020). Model-based decoupling of evoked and spontaneous neural activity in calcium imaging data. PLOS Computational Biology 16(11): e1008330. [Link]

M. A. Triplett & G. J. Goodhill. (2019). Probabilistic encoding models for multivariate neural data. Frontiers in Neural Circuits 13:1. [Link]

M. A. Triplett, L. Avitan & G. J. Goodhill. (2018). Emergence of spontaneous assembly activity in developing neural networks without afferent input. PLOS Computational Biology  14(9): e1006421. [Link]

F. Abbas, M. A. Triplett, G. J. Goodhill & M. P. Meyer. (2017). A three-layer network model of direction selective circuits in the optic tectum. Frontiers in Neural Circuits 11:88. [Link]

Statistical Genetics

M. R. Robinson, G. English, G. Moser, L. R. Lloyd-Jones, M. A. Triplett, Z. Zhu et al. (2017). Genotype-covariate interaction effects and the heritability of adult body mass index. Nature Genetics 49, 1174-1181 . [Link]

Mathematical and Philosophical Logic

A. Nies, M. A. Triplett & K. Yokoyama. (2021). The reverse mathematics of theorems of Jordan and Lebesgue. Journal of Symbolic Logic 86(4), 1657-1675. [Link]

P. Girard & M. A. Triplett. (2017). Prioritised ceteris paribus logic for counterfactual reasoning. Synthese 195:1681. [Link]

P. Girard & M. A. Triplett. (2015). Ceteris paribus logic in counterfactual reasoning. Proceedings Fifteenth Conference on Theoretical Aspects of Rationality and Knowledge. Electronic Proceedings in Theoretical Computer Science 215. [Link]


Dissertations

Neural encoding models for multivariate optical imaging data. (2020). PhD thesis. University of Queensland, Australia. [Link]

Computable functions of bounded variation and the complexity of Jordan decomposition. (2015). Honours dissertation. University of Auckland, New Zealand. [Link]


Software

CAVIaR (Coordinate-ascent variational inference and isotonic regularization)
https://github.com/marcustriplett/circuitmap

Bataro (Bayesian target optimisation)
https://github.com/marcustriplett/bataro


Contact

mat2245@columbia.edu
Mortimer B. Zuckerman Mind Brain Behavior Institute
Columbia University
3227 Broadway, New York, NY 10027
United States of America