Name: Daegun Yoon (윤대건, 尹㙜建)
Degree: Ph.D.
Affiliation: SK hynix, Republic of Korea
Email: daegun.yoon@sk.com
Tel: TBD
Software Engineer at SK hynix, Republic of Korea
Oct. 2024 ~ Present (Memory Systems Research)
Researcher at Electronics and Telecommunications Research Institute (ETRI), Republic of Korea
Jan. 2024 ~ Oct. 2024 (High Performance Computing System Research Section)
GPU architecture
Large language models
Computer architecture
Memory subsystem
Ph.D. in Department of Artificial Intelligence, Ajou University
Sep. 2018 - Feb. 2024
B.S. in Department of Software, Ajou University
Mar. 2013 - Aug. 2018
Preserving Near-Optimal Gradient Sparsification Cost for Scalable Distributed Deep Learning. Daegun Yoon, Sangyoon Oh. CCGrid 2024, May. 2024. [Paper] [Code]
MiCRO: Near-Zero Cost Gradient Sparsification for Scaling and Accelerating Distributed DNN Training. Daegun Yoon, Sangyoon Oh. HiPC 2023, Dec. 2023. [Paper] [Code]
DEFT: Exploiting Gradient Norm Difference between Model Layers for Scalable Gradient Sparsification. Daegun Yoon, Sangyoon Oh. ICPP 2023, Aug. 2023. [Paper] [Code]
2025
StreamDQ: HBM-Integrated On-the-Fly DeQuantization via Memory Load for Large Language Models. Minki Jeong, Daegun Yoon, Soohong Ahn, Seungyong Lee, Jooyoung Kim, Jinuk Jeon, Joonseop Sim, Youngpyo Joo, Hoshik Kim. Computer Architecture Letters, Oct. 2025. [Paper]
HPU: High-Bandwidth Processing Unit for Scalable, Cost-effective LLM Inference via GPU Co-processing. Myunghyun Rhee, Joonseop Sim, Taeyoung Ahn, Seungyong Lee, Daegun Yoon, Euiseok Kim, Kyoung Park, Youngpyo Joo, Hoshik Kim. arXiv, Apr. 2025. [Paper]
2024
Analog Computing for AI Sometimes Needs Correction by Digital Computing: Why and When. Changdae Kim, Daegun Yoon, Taehoon Kim, Yeonjeong Jeong, Kangho Kim, Kwangwon Koh, Eunji Pak. Workshop on MLNCP (NeurIPS 2024), Dec. 2024. [Paper]
Preserving Near-Optimal Gradient Sparsification Cost for Scalable Distributed Deep Learning. Daegun Yoon, Sangyoon Oh. CCGrid 2024, May. 2024. [Paper] [Code]
2023
MiCRO: Near-Zero Cost Gradient Sparsification for Scaling and Accelerating Distributed DNN Training. Daegun Yoon, Sangyoon Oh. HiPC 2023, Dec. 2023. [Paper] [Code]
DEFT: Exploiting Gradient Norm Difference between Model Layers for Scalable Gradient Sparsification. Daegun Yoon, Sangyoon Oh. ICPP 2023, Aug. 2023. [Paper] [Code]
연합학습 기법들의 성능평가를 지원하는 이기종 기반의 실험 플랫폼 설계. 유미리, 윤대건, 오상윤. 2023 한국통신학회 하계학술대회, Jun. 2023. [Paper]
Can hierarchical client clustering mitigate the data heterogeneity effect in federated learning?. Seungjun Lee, Miri Yu, Daegun Yoon, Sangyoon Oh. Workshop on ScaDL (IPDPS 2023), May. 2023. [Paper]
SAGE: toward on-the-fly gradient compression ratio scaling. Daegun Yoon, Minjoong Jeong, Sangyoon Oh. The Journal of Supercomputing, Feb. 2023. [Paper] [Code]
연합학습에서의 보안 취약점 분석. 최지헌, 유미리, 윤대건, 오상윤. 2023 한국통신학회 동계학술대회, Feb. 2023. [Paper]
2022
WAVE: designing a heuristics-based three-way breadth-first search on GPUs. Daegun Yoon, Minjoong Jeong, Sangyoon Oh. The Journal of Supercomputing, Nov. 2022. [Paper] [Code]
Empirical Analysis on Top-k Gradient Sparsification for Distributed Deep Learning in a Supercomputing Environment. Daegun Yoon, Sangyoon Oh. ICNGC 2022, Oct. 2022. [Paper]
전술망의 라우팅 성능 개선을 위한 성능 지표 분석 기반 정책 엔진 설계. 윤대건, 노병희, 오상윤. 한국통신학회 논문지, Sep. 2022. [Paper]
SDN 정책엔진의 사용자 모듈을 위한 분석 요청 정의 언어. 이승준, 윤대건, 오상윤. 한국통신학회 논문지, Sep. 2022. [Paper]
AMBLE: Adjusting Mini-Batch and Local Epoch for Federated Learning with Heterogeneous Devices. Juwon Park, Daegun Yoon, Sangho Yeo, Sangyoon Oh. Journal of Parallel and Distributed Computing, Jul. 2022. [Paper]
SURF: Direction-Optimizing Breadth-First Search Using Workload State on GPUs. Daegun Yoon, Sangyoon Oh. Sensors, Jun. 2022. [Paper] [Code]
재난 대응 기계학습 모델의 Data Drift 문제에 대한 MLOps 기반 대응 기법. 정현석, 유미리, 윤대건, 이승준, 오상윤. 2022 한국차세대컴퓨팅학회 춘계학술대회, May. 2022. [Paper]
2021
Mitigating Cold Start Problem in Serverless Computing with Function Fusion. Seungjun Lee, Daegun Yoon, Sangho Yeo, Sangyoon Oh. Sensors, Dec. 2021. [Paper] [Code]
Traversing Large Road Networks on GPUs with Breadth-First Search. Daegun Yoon, Sangyoon Oh. ICNGC 2021, Nov. 2021. [Paper] [Code]
전술망 성능 개량을 위한 정책 엔진 인터페이스 설계. 윤대건, 노병희, 오상윤. 2021 한국군사과학기술학회 종합학술대회, Nov. 2021. [Paper]
Imitation learning for VM placement problem using demonstration data generated by heuristics. Seungjun Lee, Daegun Yoon, Sangyoon Oh. ICDATA 2021, Jul. 2021. [Paper]
Balanced content space partitioning for pub/sub: a study on impact of varying partitioning granularity. Daegun Yoon, Zhetao Li, Sangyoon Oh. The Journal of Supercomputing, Apr. 2021. [Paper] [Code]
2020
Exploring a system architecture of content-based publish/subscribe system for efficient on-the-fly data dissemination. Daegun Yoon, Gyudong Park, Sangyoon Oh. Concurrency and Computation: Practice and Experience, Nov. 2020. [Paper] [Code]
Software-Defined Network에서의 Conflict Resolution을 위한 정책엔진 구조 및 전략 분석. 윤대건, 오상윤. 2020 한국통신학회 하계종합학술발표회, Aug. 2020. [Paper]
CPartition: a Correlation-Based Space Partitioning for Content-Based Publish/Subscribe Systems with Skewed Workload. Daegun Yoon, Gyudong Park, Sangyoon Oh. BigComp 2020, Feb. 2020. [Paper] [Code]
2018
동종 운영체제 환경에서의 가상 머신 마이그레이션 성능 분석. 윤대건, 오상윤. 2018 한국정보과학회 한국컴퓨터종합학술대회, Jun. 2018. [Paper]
온라인 뉴스, 댓글, 사용자 특성 파악을 위한 감정 분석 시스템 제작. 윤대건, 한경식. 2018 한국통신학회 동계종합학술발표회, Jan. 2018. [Paper]
2016
가상 AUTOSAR Platform 상에서의 Traction Control System 설계 및 시뮬레이션 방법. 김진호, 이관형, 이태민, 윤대건, 이해승, 이정태. 2016 한국정보과학회 한국컴퓨터종합학술대회, Jun. 2016. [Paper]
Patent
전자 장치의 SDN 성능 개선 방법. 오상윤, 노병희, 윤대건, 이철웅, 김경우. 출원번호: 10-2022-0006572, Jan. 2022, 등록: Feb. 2024.
PCT 출원번호: PCT/KR2022/014764, Sep. 2022.
미국 출원번호: 17/957,174, Oct. 2022, 등록: Dec. 2025.
워크로드 규모 분석에 따른 적응형 그래프 탐색 장치 및 방법. 오상윤, 윤대건. 출원번호: 10-2023-0004444, Jan. 2023, 등록: Jun. 2023.
이벤트 공간 분할 방법 및 장치, 컴퓨터 판독 가능한 기록 매체 및 컴퓨터 프로그램. 박민호, 오상윤, 윤대건, 함재현. 출원번호: 10-2021-0075518, Jun. 2021, 등록: Jul. 2022.