Jun Seung Pi
Department of Physics, S1-1,
chungdae-ro 1, Seowon-gu, Cheongju-si,
Chungcheongbuk-do, Republic of Korea
Email: junseung.pi@cbnu.ac.kr
Reserach Profiles: INSPIRE
Jun Seung Pi
Department of Physics, S1-1,
chungdae-ro 1, Seowon-gu, Cheongju-si,
Chungcheongbuk-do, Republic of Korea
Email: junseung.pi@cbnu.ac.kr
Reserach Profiles: INSPIRE
Education
Chungbuk National University, M.S. in Department of Physics, Cheongju, Korea 03/2023 - Present
Chungbuk National University, B.S. in Department of Physics, Cheongju, Korea 02/2023
Research Interests
Identifying cosmic signatures of inflationary particles
Identifying Untapped Signatures of New Particles at the Colliders
Awards
Outstanding Presentation Award, 05/2022
The Korean Physical Society (KPS)
Publications*
(*The convention intheoretical particle physicsis to listauthors in alphabetical order)
T. Flacke, J. H. Kim, M. Kunkel, P. Ko, J. S. Pi, and W. Porod, Hunting and identifying coloured resonances in four top events with machine learning, arXiv:2506.04318.
A.Banik, J. H. Kim, J. S. Pi and Y. Tai, Echoes of Self-Interacting Dark Matter from Binary Black Hole Mergers, Under Review at Phys. Rev. Lett, arXiv:2503.08787.
A. Y. Choi, S. H. Lim, J. H. Kim, and J. S. Pi, Leveraging Transformers for Cosmological Parameter Estimation from a Large Scale Structure, New Phys.Sae Mulli 73 (2023) 9, 785-800,
T. Flacke, J. H. Kim, M. Kunkel, P. Ko, J. S. Pi, W. Porod, and L. Schwarze, Uncovering Doubly Charged Scalars with Dominant Three-body Decays Using Machine Learning, JHEP 11 (2023) 009, arXiv:2304.09195.
L. Huang, S. Kang, J. H. Kim, K. C. Kong, and J. S. Pi, Portraying double Higgs at the Large Hadron Collider II, JHEP 08 (2022) 114, arXiv:2203.11951.
Studies in Progress
Selected Schools
QUC Summer School on "A.I. in High Energy Physics", KIAS 07/2022
KIAS Particle Physics Summer Camp 2022, KIAS 08/2022
Extended Visits
Visitor at University of Würzburg 06/2022
Visitor at University of Notre Dame 04/2025
Professional Memberships
Korean Physical Society (KPS)
Computing Skills
Languages
Mathematica, C++, Python
Machine Learning
Dense Neural Networks, Recurrent Neural Networks (RNN), Long Short-Time Memory (LSTM), Convolutional Neural Networks (CNN), Residual Neural Networks (ResNet), Capsule Neural Networks, Matrix Capsule Neural Networks, Graph Neural Networks (GNN), Spiking Neural Networks (SNN), Vision Transformer (ViT), Data-efficient image Transformer (DeiT), Swin Transformer (Swin), Convolutional Vision Transformer (CvT) based on PyTorch frameworks.
Collider Analysis
MadGraph5_aMC@NLO, FeynRules and NLOCT packages, Pythia, FastJet, Delphes
Analytic Matrix Element and Loop Calculations
FeynArts, FormCalc, LoopTools, Package X
Tools for Cosmology
Cosmic Linear Anisotropy Solving System (CLASS), Monte Python (Monte Carlo code for cosmological parameter extraction), GADGET-2,3,4, FastPM (cosmological N-body simulations) and KETJU
Languages
English and Korean (Native)
Supervisor
Prof. Jeong Han Kim
Department of Physics, S1-1,
chungdae-ro 1, Seowon-gu, Cheongju-si,
Chungcheongbuk-do, Republic of Korea
Email: jeonghan.kim@cbnu.ac.kr