Vector-based data augmentation and network learning for erfficient crack data collection
제목 : 효율적인 균열 데이터 수집을 위한 벡터 기반 데이터 증강과 네트워크 학습
김종현*
(* : 강남대학교)
한국컴퓨터그래픽스학회논문지 제28권 2호, 2022.6, 1-9페이지
제목 : 효율적인 균열 데이터 수집을 위한 벡터 기반 데이터 증강과 네트워크 학습
김종현*
(* : 강남대학교)
한국컴퓨터그래픽스학회논문지 제28권 2호, 2022.6, 1-9페이지
Abstract : 본 논문에서는 균열을 감지 할 때 필요한 데이터를 생성할 수 있는 벡터 기반 증강 기법과 이를 학습할 수 있는 합성곱인공신경망(Convolution Neural Networks, ConvNet) 기법을 제안한다. 균열을 빠르고 정확하게 감지하는 것은 건물 붕괴와 낙하 사고를 사전에 방지할 수 있는 중요한 기술이다. 이 문제를 인공지능으로 해결하기 위해서는 대량의 데이터 확보가 필수적이지만, 실제 균열 이미지를 얻기 위한 상황은 대부분 위험하기 때문에 대량의 균열 데이터를 확보하기는 어렵다. 이런 데이터베이스 구축의 문제점은 인위적인 특정 부분에 변형을 주어 데이터의 양을 늘리는 탄성왜곡(Elastic distortion)으로 완화시킬 수 있지만, 본 논문에서는 이보다 향상된 균열 패턴 결과를 ConvNet을 활용하여 모델링한다. 탄성왜곡보다 우리의 방법이 실제 균열 패턴과 유사하게 추출된 결과를 얻을 수 있었고, 일반적인 데이터 증강에서 사용되는 픽셀 단위가 아닌, 벡터 기반으로 균열 데이터 증강을 설계함으로써 균열의 변화량 측면에서 우수한 결과를 얻을 수 있다. 결과적으로 본 논문에서는 적은 개수의 균열 데이터를 입력으로 사용했음에도 불구하고 균열의 방향 및 패턴을 다양하게 생성하여 효율적으로 균열 데이터베이스를 구축할 수 있다.
[paper]