LaTeX : https://drive.google.com/file/d/1Ncid4LFcY5dfM-lLtrK3_CEiwcfCt6J_/view?usp=sharing
https://colab.research.google.com/drive/1v7S2z85R42Xa5_XdwzL2lFTZ3eyuyUEq?usp=sharing
L1 Stats : https://drive.google.com/open?id=1gLsanCnO5CE7D5t1rF9yVtojX6oit1wz
php :
//Our SQL statement, which will select a list of tables from the current MySQL database.
$sql = "SHOW TABLES";
//Prepare our SQL statement,
$statement = $pdo->prepare($sql);
//Execute the statement.
$statement->execute();
//Fetch the rows from our statement.
$tables = $statement->fetchAll(PDO::FETCH_NUM);
//Loop through our table names.
foreach($tables as $table){
//Print the table name out onto the page.
echo $table[0], '<br>';
}
master m2 :
!wget --output-document=vgg19.npy https://media.githubusercontent.com/media/tensorlayer/pretrained-models/master/models/vgg19.npy
class Vgg19:
def __init__(self, vgg19_npy_path="./vgg19.npy", reuse=False, name="vgg19"):
self.data_dict = np.load(vgg19_npy_path, encoding='latin1', allow_pickle=True).item()
self.reuse = reuse
self.name = name
self.couches ={}
def build(self, couche_in, withFC):
self.couches["IN"] = couche_in
couche_in = couche_in - tf.constant(np.array([103.939, 116.779, 123.68]).reshape((1, 1, 1, 3)), dtype='float32')
with tf.variable_scope(self.name, reuse=self.reuse):
struct = ["conv1_1", "conv1_2", "pool1","conv2_1", "conv2_2", 'pool2',
"conv3_1","conv3_2","conv3_3","conv3_4","pool3","conv4_1",
"conv4_2","conv4_3","conv4_4","pool4","conv5_1","conv5_2",
"conv5_3","conv5_4", "pool5", "fc6", "fc7"]
tmp = couche_in
for line in struct:
if line[:4]=="conv":
tmp = self.conv_layer(tmp, line)
elif line[:4]=="pool":
tmp = self.max_pool(tmp, line)
elif withFC:
tmp = self.fc_layer(tmp, line, relu=True)
self.data_dict = None
def get(self, name):
return self.couches[name]
def max_pool(self, bottom, name):
return tf.nn.max_pool(bottom, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME', name=name)
def conv_layer(self, bottom, name):
with tf.variable_scope(name):
filt = tf.constant(self.data_dict[name][0], name="filter")
conv = tf.nn.conv2d(bottom, filt, [1, 1, 1, 1], padding='SAME')
conv_biases = tf.constant(self.data_dict[name][1], name="biases")
bias = tf.nn.bias_add(conv, conv_biases)
relu = tf.nn.relu(bias)
self.couches[name] = relu
return relu
def fc_layer(self, bottom, name, relu):
with tf.variable_scope(name):
x = tf.contrib.layers.flatten(bottom)
weights = tf.constant(self.data_dict[name][0], name="weights")
biases = tf.constant(self.data_dict[name][1], name="biases")
fc = tf.nn.bias_add(tf.matmul(x, weights), biases)
if relu:
fc = tf.nn.relu(fc)
self.couches[name] = fc
return fc
Address
Laboratoire des Sciences de l'Information et des Systèmes
I&M Team, Images & Models
UMR CNRS 7296
case 925 - 163, avenue de Luminy
13288 Marseille cedex 9
POLYTECH, Luminy, Bat. C Bureau C113
E-mail : jerome [dot] pasquet [at] univ-montp3 [dot] fr
E-mail : jerome [dot] pasquet [at] lis-lab [dot] fr
Phone : +33 (0)670 646 914