Currently a postdoc in University of São Paulo.
I obtained my Phd in IME - USP funded by CNPq, supervised by Marcone C. Pereira. After this, I was a postdoc in IME - USP supervised by Antoine Laurain (2019 - 2020). Thereafter, a postdoc in Instituto de Ciências Matemáticas e Computação (ICMC) USP supervised by Alexandre Nolasco de Carvalho (funded by INCTMat - CAPES), 2020 - 2021. Then, I became a postdoc in University of Zagreb supervised by Igor Pazanin (funded by the Croatian Science Foundation), 2021 - 2022. From 2022 to 2023, I was a postdoc in University of São Paulo, supervised by M. C. Pereira. From 2023 to 2024, a postdoc in University of Hokkaido supervised by Shuichi Jimbo funded by FAPESP.
CV Lattes: http://lattes.cnpq.br/1588288522116212
Contact: nakasato@ime.usp.br or j.c.nakasato@math.sci.hokudai.ac.jp j.c.nakasato@math.sci.hoku j.c.nakasato@math.sci.hoku
Asymptotic Analysis
Singular Perturbation of Domains (thin domains, domains with rough boundary, perforated domains)
Mathematical Modeling in Fluid Mechanics
Analysis of linear and non-linear PDE's
Antoine Laurain - University of Duisburg-Essen
Antonio Gaudiello - University of Cassino and South Lazio
Ariadne Nogueira
Carmen Peruggia - University of Cassino
Giuseppe Cardone - University of Naples - Federico II
Fabio Prates Machado - Universidade de São Paulo
Igor Pažanin - University of Zagreb
José Maria Arrieta - Universidad Complutense de Madrid
Júlio Daniel Rossi - Universidad de Buenos Aires
Luisa Faella - University of Sannio
Manuel Villanueva-Pesqueira - Universidad de Comillas
Marcone Corrêa Pereira - Universidade de São Paulo
Monia Cappana
Patrícia Neves de Araújo - Institituto Federal de São Paulo
Pedro Paes Tavares Lopes - Universidade de São Paulo
Shuichi Jimbo - University of Hokkaido
Tatsu-Hiko Miura - University of Hirosaki
Peer-reviewed
P. N. Araújo, J. C. Nakasato and M. C. Pereira. A semilinear elliptic equation with homogeneous Neumann boundary conditions on thin domais with outward peaks. Accepted for publication in Revista Matemática Complutense.
J. M. Arrieta, J. C. Nakasato and M. Villanueva-Pesqueira, Homogenization in 3D thin domains with oscillating boundaries of different orders. Nonlinear Anal, Theory, Methods and appl. 251, 2025. https://doi.org/10.1016/j.na.2024.113667, http://arxiv.org/abs/2405.05599
J. C. Nakasato and I. Pažanin. Asymptotic modelling of the current flow system described by the $p(x)$-Laplacian. Z Angew Math Mech. e202400253 (2024). https://doi.org/10.1002/zamm.202400253
G. Cardone, L. Faella, J. C. Nakasato and C. Perugia. Nonlinear coupled problems in thin domains with corrugated boundaries. Annali di Matematica Pura ed Applicata, v. 203, p. 2199-2234, 2024.
M. Capanna, J. C. Nakasato, M. C. Pereira & J. D. Rossi. Homogenization for nonlocal evolution problems with three different smooth kernels. Journal of Dynamics and Differential Equations, v. 36, p. 1247-1283, 2024.
J. C. Nakasato and M. C. Pereira. A reiterated homogenization problem for the p-Laplacian equation in corrugated thin domains. J. of Diff. Equations 392 (2024) 165–208.
J. C. Nakasato and I. Pažanin. Homogenization of the non-isothermal, non-Newtonian fluid flow through a thin domain with corrugated boundary. Zeitschrift fur Angewandte Mathematik und Physik 74, 211 (2023), 1-32.
J. C. Nakasato and M. C. Pereira. Quasilinear problems with nonlinear boundary conditions in higher dimensional thin domains with corrugated boundaries. Advanced Nonlinear Studies, vol. 23, no. 1, 2023, pp. 20230101.
J. C. Nakasato, I. Pažanin and M. C. Pereira. On the non-isothermal, non-Newtonian Hele-Shaw flows in a domain with rough boundary. Journal of Mathematical Analysis and Applications, p. 127062, 2023.
A. Laurain, P. T. P. Lopes & J. C. Nakasato. Lagrangian methods in shape optimization. ESAIM: COCV 29 (5) (2023).
J. C. Nakasato and M. C. Pereira. An optimal control problem in a tubular thin domain with rough boundary. J. of Diff. Equations 313 (2022) 188–243.
J. C. Nakasato and M. C. Pereira. The p-Laplacian in thin channels with locally periodic roughness and different scales. Nonlinearity, v. 35, p. 2474–2512, 2022.
J. C. Nakasato, I. Pažanin and M. C. Pereira, Reaction-diffusion problem in a thin domain with oscillating boundary and varying order of thickness. Zeitschrift fuer Angewandte Mathematik und Physik 72 (1) (2021) 1–17.
J. C. Nakasato, I. Pažanin and M. C. Pereira. Roughness–induced effects on the convection–diffusion–reaction problem in a thin domain, Applicable Analysis 100 (2021) 1107–1120.
M. Capanna, J. C. Nakasato, M. C. Pereira & J. D. Rossi. Rossi, Homogenization for nonlocal problems with smooth kernels. DCDS v. 41, p. 2777–2808, 2021.
J. C. Nakasato and M. C. Pereira. A classical approach for the p-Laplacian in oscillating thin domains. Topological Methods in Nonlinear Analysis, v. 58, p. 209–231, 2021.
J. M. Arrieta, J. C. Nakasato and M. C. Pereira, The p-Laplacian operator in thin domains: The unfolding approach, Journal of Differential Equations 274 (15) (2021) 1-34.
A. Nogueira & J. C. Nakasato. The p-Laplacian equation in a rough thin domain with terms concentrating on the boundary. Annali di Matematica Pura ed Applicata 199, 1789–1813, 2020.
A. Nogueira, J. C. Nakasato & M. C. Pereira. Concentrated reaction terms on the boundary of rough domains for a quasilinear equation. Applied Mathematics Letters, p. 106120, 2019.
Submitted, Preprints and In Preparation
J. C. Nakasato, The Stokes equation in a thin domain with multiple order of oscillations. In preparation.
J. C. Nakasato and J. D. Rossi, Rates of convergence for nonlocal problems in thin domains. In preparation.
A. Gaudiello, J. C. Nakasato and M. C. Pereira, Roughness efects in p-Laplacian problems on thin domains with Signorini-type constraints. Preprint.
S. Jimbo and J. C. Nakasato, Eigenvalue of the Laplacian with Dirichlet-Neumann boundary conditions in thin domains: Dirichlet, Neumann and Robin limits. Preprint.
T. H. Miura and J. C. Nakasato, Homogenization of the heat equation in an oscillatory moving thin domain. Preprint.
F. P. Machado, J. C. Nakasato and M. C. Pereira, The Poisson problem in a thin domain with randomly oscillating boundary. Submitted.
Mathematical Theory of Origami
Classical Guitar