Deep learning based recommender system: A survey and new perspectives. Zhang, S., Yao, L., Sun, A., & Tay, Y. (2019). ACM computing surveys (CSUR), 52(1), 1-38.
Neural collaborative filtering. He, X., Liao, L., Zhang, H., Nie, L., Hu, X., & Chua, T. S. (2017, April). In Proceedings of the 26th international conference on world wide web (pp. 173-182).
Deep matrix factorization models for recommender systems. Xue, H. J., Dai, X., Zhang, J., Huang, S., & Chen, J. (2017, August). In IJCAI (Vol. 17, pp. 3203-3209).
Deepcf: A unified framework of representation learning and matching function learning in recommender system. Deng, Z. H., Huang, L., Wang, C. D., Lai, J. H., & Yu, P. S. (2019, July). In Proceedings of the AAAI conference on artificial intelligence (Vol. 33, No. 01, pp. 61-68).
Joint neural collaborative filtering for recommender systems. Chen, W., Cai, F., Chen, H., & Rijke, M. D. (2019). ACM Transactions on Information Systems (TOIS), 37(4), 1-30.
Dual-embedding based neural collaborative filtering for recommender systems. He, G., Zhao, D., & Ding, L. (2021). arXiv preprint arXiv:2102.02549.
DDFL: a deep dual function learning-based model for recommender systems. Shah, S. T. U., Li, J., Guo, Z., Li, G., & Zhou, Q. (2020, September). In International Conference on Database Systems for Advanced Applications (pp. 590-606). Cham: Springer International Publishing.
Outer product-based neural collaborative filtering. He, X., Du, X., Wang, X., Tian, F., Tang, J., & Chua, T. S. (2018). arXiv preprint arXiv:1808.03912.
Comet: Convolutional dimension interaction for collaborative filtering. Lin, Z., Feng, L., Guo, X., Zhang, Y., Yin, R., Kwoh, C. K., & Xu, C. (2023). ACM Transactions on Intelligent Systems and Technology, 14(4), 1-18.
Deep collaborative recommendation algorithm based on attention mechanism. Cui, C., Qin, J., & Ren, Q. (2022). Applied Sciences, 12(20), 10594.
Dual relations network for collaborative filtering. Ji, D., Xiang, Z., & Li, Y. (2020). IEEE Access, 8, 109747-109757.
DELF: A dual-embedding based deep latent factor model for recommendation. Cheng, W., Shen, Y., Zhu, Y., & Huang, L. (2018, July). In IJCAI (Vol. 18, pp. 3329-3335).
Slim: Sparse linear methods for top-n recommender systems. Ning, X., & Karypis, G. (2011, December). In 2011 IEEE 11th international conference on data mining (pp. 497-506). IEEE.
Fism: factored item similarity models for top-n recommender systems. Kabbur, S., Ning, X., & Karypis, G. (2013, August). In Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 659-667).
NAIS: Neural attentive item similarity model for recommendation. He, X., He, Z., Song, J., Liu, Z., Jiang, Y. G., & Chua, T. S. (2018). IEEE Transactions on Knowledge and Data Engineering, 30(12), 2354-2366.
AE based Collaborative Filtering
Autorec: Autoencoders meet collaborative filtering. Sedhain, S., Menon, A. K., Sanner, S., & Xie, L. (2015, May). In Proceedings of the 24th international conference on World Wide Web (pp. 111-112).
Collaborative denoising auto-encoders for top-n recommender systems. Wu, Y., DuBois, C., Zheng, A. X., & Ester, M. (2016, February). In Proceedings of the ninth ACM international conference on web search and data mining (pp. 153-162).
Variational autoencoders for collaborative filtering. Liang, D., Krishnan, R. G., Hoffman, M. D., & Jebara, T. (2018, April). In Proceedings of the 2018 world wide web conference (pp. 689-698).
One Class Collaborative Filtering
Recommending based on implicit feedback. Jannach, D., Lerche, L., & Zanker, M. (2018). In Social information access: systems and technologies (pp. 510-569). Cham: Springer International Publishing.
Modeling User Exposure in Recommendation. Liang, D., Charlin, L., McInerney, J., & Blei, D. M. (2016, April). Modeling user exposure in recommendation. In Proceedings of the 25th international conference on World Wide Web (pp. 951-961).
BPR: Bayesian personalized ranking from implicit feedback. Rendle, S., Freudenthaler, C., Gantner, Z., & Schmidt-Thieme, L. (2012). arXiv preprint arXiv:1205.2618.
Climf: learning to maximize reciprocal rank with collaborative less-is-more filtering. Shi, Y., Karatzoglou, A., Baltrunas, L., Larson, M., Oliver, N., & Hanjalic, A. (2012, September). In Proceedings of the sixth ACM conference on Recommender systems (pp. 139-146).