Jakub K. Sowa

Postdoctoral researcher in theoretical chemical physics

I am currently a postdoctoral research fellow in the Department of Chemistry at Rice University working with Prof. Peter Rossky. Prior to taking up my current position, I was working as a postdoctoral research fellow with Prof. Tamar Seideman at Northwestern University, and, briefly, in  the Materials Department at the University of Oxford providing theoretical support for the QuEEN (Quantum Effects in Electronic Nanodevices) programme.

For my undergraduate degree (M.Chem), I read Chemistry at Hertford College, Oxford. During my Part II project, I worked with Prof. Peter Hore on spin relaxation in biologically-relevant radical pair magnetoreceptors. In October 2015, I moved to the Department of Materials and Wolfson College, Oxford to pursue a D.Phil (PhD) on a Clarendon Scholarship. I worked under the supervision of Dr Erik Gauger, Dr Jan Mol and Prof. Andrew Briggs on the theory of resonant charge transport through molecular junctions. After two years, I moved back to Hertford College to finish my D.Phil on a Senior Scholarship. My thesis (submitted in March 2019) was titled Vibrational effects in quantum transport through single-molecule junctions and can be found here.

My research interests span a broad range of condensed-phase molecular phenomena.  I have been interested in the interplay between the unitary and dissipative dynamics that governs charge, energy, and spin dynamics in molecular systems. My primary focus has been charge transport through single-molecule junctions but I have also explored the rich world of photoisomerisation, electron and energy transfer dynamics. More recently, my focus has shifted to soft matter and highly disordered molecular structures including semiconducting polymers and hybrid organic-inorganic systems.

I enjoy collaborating with experimentalists. My past and current experimental collaborators include the groups of Andrew Briggs (Oxford), Harry Anderson (Oxford), Herre van der Zant (TU Delft), Pascal Gehring (UC Louvain), Emily Weiss (Northwestern),  and Sean Roberts (UT Austin). My computational and theoretical collaborators have included Neill Lambert (RIKEN) and Ben Levine (Stony Brook).


Research Highlights

Exploring nanocrystal ligand geometries with machine-learned force fields

Using machine-learned force fields trained on DFT data, we investigated the geometries adopted by organic ligands passivating a PbS nanocrystal. We demonstrated that the carboxylate ligands on the surface of the nanocrystal adopt a wide range of 'bridge' geometries and, using ML methods, investigated the corresponding ligand vibrational spectrum.


Key Publications:
J. K. Sowa, S. T. Roberts, P. J. Rossky, J. Phys. Chem. Lett.  14, 7215-7222 (2023).
D. Cadena, J. K. Sowa, D. Cotton, C. Wight, C. Hoffman, H. Wagner, J. Boette, E. Raulerson, B. Iverson, P. J. Rossky, S. Roberts, J. Am. Chem. Soc. 144, 49, 22676–22688 (2022).

Uncovering the mechanism of polymer thin film formation

Using MD methods, we demonstrated that P3HT oligomers accumulate near the surface of their concentrated solutions and adopt conformational geometries driven by different affinities of the solvent with respect to the side chains and the backbone of the oligomers. We speculate that the structure established near the interface may propagate into the bulk and influence the properties of the entire film.


Key Publication:
J. K. Sowa, T. C. Allen, P. J. Rossky, Phys. Chem. Chem. Phys. 25, 20808–20816 (2023).

Marcus theory of charge transport through molecular junctions

We showed how the Marcus and Landauer descriptions of charge transport through molecular junctions can be unified by introducing lifetime broadening into the conventional Marcus theory. We proposed two ways of doing so: one simpler but less accurate, and one more complex but also more reliable. Some of our theoretical predictions were tested within the QuEEN programme.


Key Publications:
J. K. Sowa, J. A. Mol, G. A. D. Briggs and E. M. Gauger, J. Chem. Phys., 149, 15, 154112 (2018)
J. O. Thomas, B. Limburg, J. K. Sowa, K. Willick, J. Baugh, G. A. D. Briggs, E. M. Gauger, H. L. Anderson and J. A. Mol, Nat. Commun. 10: 4628 (2019)
J. K. Sowa, N. Lambert, T. Seideman and E. M. Gauger, J. Chem. Phys. 152, 6, 064103 (2020)
J. K. Sowa and R. A. Marcus, J. Chem. Phys. 154, 3, 034110 (2021)

Thermoelectricity at the nanoscale

We investigated the efficiency of thermoelectric heat-to-energy conversion in single-molecule junctions as well as graphene quantum dots. We established the importance of electronic degeneracies in enhancing the thermoelectric performance of nanoscale devices, and demonstrated the deleterious effects of environmental interactions on the thermoelectric power factor.

Key Publications:
J. K. Sowa, J. A. Mol and E. M. Gauger, J. Phys. Chem. C , 123, 7, 4103-4108 (2019)
A. Harzheim, J. K. Sowa, J. L. Swett, G. A. D. Briggs, J. A. Mol and P. Gehring, Phys. Rev. Research 2, 013140 (2020)
P. Gehring, J. K. Sowa, C. Hsu, J. de Bruijckere, M. van der Star, J. Le Roy, L. Bogani, E. M. Gauger, H. van der Zant, Nat. Nanotechnol. 16, 423-430 (2021)

Spin relaxation in protein radical pairs 

The Radical Pair mechanism, which relies on quantum-mechanical spin dynamics of correlated radicals, remains the leading hypothesis for the workings of magnetic-field sensing in migratory birds. It is typically thought that spin relaxation must inevitably lead to by disturbing the unitary evolution of the electron spins. We demonstrated theoretically that a certain mechanism of spin relaxation - singlet-triplet dephasing, which can arise due to fluctuations of the exchange and dipolar interactions - may in fact lead to substantial enhancements of the sensitivity of the radical pair compass.  

This research has been widely covered in the popular press including The Washington Post, you can read their take on it here.


Key Publication:
D. R. Kattnig, J. K. Sowa, I. A. Solov'yov and P. J. Hore, New J. Phys., 18.6: 063007 (2016)

Publications

22. IR Spectroscopy of carboxylate-passivated semiconducting nanocrystals: simulation and experiment J. K. Sowa, D. M. Cadena, A. Mehmood, B. G. Levine, S. T. Roberts, P. J. Rossky submitted (2024).

21. Structural disorder at the edges of rubrene crystals enhances singlet fissionT. S. Volek, Z. T. Armstrong, J. K. Sowa, K. S. Wilson, M. Bohlmann Kunz, K. Bera, M. Koble, R. R. Frontiera, P. J. Rossky, M. T. Zanni, S. T. Roberts, J. Phys. Chem. Lett. 14, 11497-11505 (2023).
20Exploring configurations of nanocrystal ligands using machine-learned force fieldsJ. K. Sowa, S. T. Roberts, P. J. Rossky, J. Phys. Chem. Lett. 14, 7215-7222 (2023).
19.  Accumulation and ordering of P3HT oligomers at the liquid-vapor interface with implications for thin-film morphologyJ. K. Sowa, T. C. Allen, P. J. Rossky, Phys. Chem. Chem. Phys. 25, 20808–20816 (2023).(2023 PCCP Hot Article)
18. Aggregation of charge acceptors on nanocrystal surfaces alters rates of photoinduced electron transfer D. M. Cadena, J. K. Sowa, D. Cotton, C. Wight, C. Hoffman, H. Wagner, J. Boette, E. Raulerson, B. Iverson, P. J. Rossky, S. Roberts, J. Am. Chem. Soc. 144, 49, 22676–22688 (2022). 
17. Charge-state dependent vibrational relaxation in a single-molecule junction X. Bian, Z. Chen, J. K. Sowa, C. Evangeli, B. Limburg, J. L. Swett, J. Baugh, G. A. D. Briggs, H. L. Anderson, J. A. Mol, J. O. Thomas, Phys. Rev. Lett. 129, 207702 (2022). 
16. Charge transport through extended molecular wires with strongly correlated electrons J. O. Thomas, J. K. Sowa, B. Limburg, X. Bian, C. Evangeli, J. L. Swett, S. Tewari, J. Baugh, G. C. Schatz, G. A. D. Briggs, H. L. Anderson, J. A. Mol, Chem. Sci. 12, 33, 11121-11129 (2021).
15. Complete mapping of the thermoelectric properties of a single molecule P. Gehring, J. K. Sowa, C. Hsu, J. de Bruijckere, M. van der Star, J. Le Roy, L. Bogani, E. M. Gauger, H. van der Zant, Nat. Nanotechnol. 16, 423-430 (2021).(Covered by phys.org)
14. On the theory of charge transport and entropic effects in solvated molecular junctionsJ. K. Sowa, R. A. Marcus, J. Chem. Phys. 154, 3, 034110 (2021). 
13. Light-triggered switching of quantum dot photoluminescence through  excited-state electron transfer to surface-bound photochromic moleculesS. Padgaonkar, C. Eckdahl, J. K. Sowa, R. López-Arteaga, D. E. Westmoreland,  E. F. Woods, S. Irgen-Gioro, B. Nagasing, T. Seideman, M. C. Hersam, J. A. Kalow, E. A. Weiss, Nano Lett.  21, 1, 854 -860 (2021).
12. Photoisomerization-coupled electron transferJ. K. Sowa, E. A. Weiss, T. Seideman, J. Chem. Phys. 153, 3, 034301 (2020).
11. Beyond Marcus theory and the Landauer-Büttiker approach in molecular junctions. II. A self-consistent Born approach J. K. Sowa, N. Lambert, T. Seideman and E. M. Gauger, J. Chem. Phys. 152, 6, 064103 (2020).
10. Role of metallic leads and electronic degeneracies in thermoelectric power generation in quantum dots  A. Harzheim, J. K. Sowa, J. L. Swett, G. A. D. Briggs, J. A. Mol and P. Gehring, Phys. Rev. Research 2, 013140 (2020).
9. Understanding resonant charge transport through weakly coupled single-molecule junctions  J. O. Thomas*, B. Limburg*, J. K. Sowa*, K. Willick, J. Baugh, G. A. D. Briggs, E. M. Gauger, H. L. Anderson and J. A. Mol, Nat. Commun. 10: 4628 (2019).( * - joint-first authorship )
8. Charge-state assignment of nanoscale single-electron transistors from their current–voltage characteristics B. Limburg, J. O. Thomas, J. K. Sowa, K. Willick, J. Baugh, G. A. D. Briggs, E. M. Gauger, J. A. Mol and H. L. Anderson, Nanoscale 11 (31), 14820-14827 (2019). 
7. Marcus theory of thermoelectricity in molecular junctionsJ. K. Sowa, J. A. Mol and E. M. Gauger, J. Phys. Chem. C , 123, 7, 4103-4108 (2019).(Highlighted in the virtual issue Computational Chemistry for Materials Discovery)
6. Beyond Marcus theory and the Landauer-Büttiker approach in molecular junctions: A unified framework J. K. Sowa, J. A. Mol, G. A. D. Briggs and E. M. Gauger, J. Chem. Phys., 149, 15, 154112 (2018).(Editor's Pick)
5. Spiro-conjugated molecular junctions: Between Jahn-Teller distortion and destructive quantum interference J. K. Sowa, J. A. Mol, G. A. D. Briggs and E. M. Gauger, J. Phys. Chem. Lett. , 9, 1859-1865 (2018).
4. Environment-assisted quantum transport through single-molecule junctions J. K. Sowa, J. A. Mol, G. A. D. Briggs and E. M. Gauger, Phys. Chem. Chem. Phys., 19, 29534-29539 (2017).
3. Distinguishing lead and molecule states in graphene-based single-electron transistors P. Gehring, J. K. Sowa, J. Cremers, Q. Wu, H. Sadeghi, Y. Sheng, J. H. Warner, C. J. Lambert, G. A. D. Briggs, and J. A. Mol, ACS Nano, 11, 5 4739-4745 (2017).
2. Vibrational effects in charge transport through a molecular double quantum dot J. K. Sowa, J. A. Mol, G. A. D. Briggs and E. M. Gauger, Phys. Rev. B, 95, 085423 (2017).
1. Electron spin relaxation can enhance the performance of a cryptochrome-based magnetic compass sensor D. R. Kattnig, J. K. Sowa, I. A. Solov'yov and P. J. Hore, New J. Phys., 18.6: 063007 (2016).(Covered in popular press including Science News magazine and The Washington Post.)

Google Scholar                ResearchGate                arxiv                LinkedIn

Contact

Address:

Department of Chemistry, Rice University

6100 Main St, Houston, TX 77005 , USA

Email:

jakub.sowa |at| rice.edu