There is currently an open postdoctoral position in my group at the Institute of Theoretical Physics, Charles University, Prague, focused on general relativity and modified theories of gravity. The position starts in March 2025 (negotiable) and lasts for two years. For more details and application instructions, visit here.
Broadly speaking, I am interested in various theoretical and mathematical aspects of general relativity and modified theories of gravity. This includes the search for exact solutions (representing black holes, gravitational waves, cosmologies, etc.), and analysis of their regularity, global structure, and explicit or hidden symmetries. I focus on gravitational theories of higher (finite or infinite) orders in curvature and covariant derivatives and on higher-derivative or nonlocal field theories (scalar fields, gravitational perturbations, etc.) in curved background spacetimes. Finally, I am also interested in higher- and lower-dimensional theories of gravity.
theoretical aspects of general relativity and modified gravity
effects of higher derivatives and nonlocality
search for exact solutions (black holes, grav. waves, etc.) and their analysis
regularity and global structure of spacetimes
explicit and hidden symmetries, integrability, and separability
higher and lower dimensions
[30] G. Frausto, I. Kolář, T. Málek, C. Torre, “Symmetry reduction of gravitational Lagrangians,” arXiv:2410.11036 [gr-qc].
[29] L. Buoninfante, F. Di Filippo, I. Kolář, F. Saueressig, “Dust collapse and horizon formation in Quadratic Gravity,” arXiv:2410.05941 [gr-qc].
[28] P. Tadros, I. Kolář, “Intrinsically-defined higher-derivative Carrollian scalar field theories without Ostrogradsky instability,” arXiv:2409.03648 [hep-th].
[27] P. Tadros, I. Kolář, “Carroll black holes in (A)dS spacetimes and their higher-derivative modifications,” Phys. Rev. D 110, 084064 (2024), arXiv:2408.01836 [gr-qc].
[26] B. L. Giacchini, I. Kolář, “Toward regular black holes in sixth-derivative gravity,” arXiv:2406.00997 [gr-qc].
[25] F. Di Filippo, I. Kolář, D. Kubiznak, “Inner-extremal regular black holes from pure gravity,” arXiv:2404.07058 [gr-qc].
[24] J. Barrientos, A. Cisterna, I. Kolář, K. Müller, M. Oyarzo, et al., “Mixing ‘Magnetic’ and ‘Electric’ Ehlers–Harrison transformations: the electromagnetic swirling spacetime and novel type I backgrounds,” Eur. Phys. J. C 84, 724 (2024), arXiv:2401.02924 [gr-qc].
[23] P. Tadros, I. Kolář, “Uniqueness of Galilean and Carrollian limits of gravitational theories and application to higher derivative gravity,” Phys. Rev. D 109, 084019 (2024), arXiv:2401.00967 [gr-qc].
[22] E. Kilicarslan, I. Kolář, “Solutions with pure radiation and gyratons in 3D massive gravity theories,” Class. Quant. Grav. 41, 085005 (2024), arXiv:2309.05383 [gr-qc].
[21] P. Tadros, I. Kolář, “Carrollian limit of quadratic gravity,” Phys. Rev. D 108, 124051 (2023), arXiv:2307.13760 [gr-qc].
[20] I. Kolář, T. Málek, “Propagators in AdS for higher-derivative and nonlocal gravity: Heat kernel approach,” arXiv:2307.13056 [gr-qc].
[19] I. Kolář, T. Málek, “Infinite derivative gravity resolves nonscalar curvature singularities,” Phys. Rev. D 108, L081502 (2023), arXiv:2307.07285 [gr-qc].
[18] U. K. B. Vinckers, Á. de la Cruz-Dombriz, I. Kolář, F. J. M. Torralba, A. Mazumdar, “Ghost-free infinite-derivative dilaton gravity in two dimensions,” Phys. Rev. D 106, 064037 (2022), arXiv:2206.07111 [gr-qc].
[17] I. Kolář, “Non-local scalar fields in static spacetimes via heat kernels,” Phys. Rev. D 105, 084026 (2022), arXiv:2201.09908 [gr-qc].
[16] C. Heredia, I. Kolář, J. Llosa, F. J. M. Torralba, A. Mazumdar, “Infinite-derivative linearized gravity in convolutional form,” Class. Quant. Grav. 39, 085001 (2022), arXiv:2112.05397 [gr-qc].
[15] I. Kolář, F. J. M. Torralba, and A. Mazumdar, “New non-singular cosmological solution of non-local gravity,” Phys. Rev. D 105, 044045 (2022), arXiv:2109.02143 [gr-qc].
[14] I. Kolář, T. Málek, S. Dengiz, and E. Kilicarslan, “Exact gyratons in higher and infinite derivative gravity,” Phys. Rev. D 105, 044018 (2022), arXiv:2107.11884 [gr-qc].
[13] J. Boos and I. Kolář, “Nonlocality and gravitoelectromagnetic duality,” Phys. Rev. D 104, 024018 (2021), arXiv:2103.10555 [gr-qc].
[12] I. Kolář, T. Málek, and A. Mazumdar, “Exact solutions of nonlocal gravity in a class of almost universal spacetimes,” Phys. Rev. D 103, 124067 (2021), arXiv:2103.08555 [gr-qc].
[11] I. Kolář and J. Boos, “Retarded field of a uniformly accelerated source in nonlocal scalar field theory,” Phys. Rev. D 103, 105004 (2021), arXiv:2102.07843 [hep-th].
[10] I. Kolář, F. J. Maldonado Torralba, and A. Mazumdar, “Junction conditions in infinite derivative gravity,” Phys. Rev. D 103, 064078 (2021), arXiv:2012.10349 [gr-qc].
[9] S. Dengiz, E. Kilicarslan, I. Kolář, and A. Mazumdar, “Impulsive waves in ghost-free infinite derivative gravity in anti-de Sitter spacetime,” Phys. Rev. D 102, 044016 (2020), arXiv:2006.07650 [gr-qc].
[8] I. Kolář and A. Mazumdar, “NUT charge in linearized infinite derivative gravity,” Phys. Rev. D 101, 124005 (2020), arXiv:2004.07613 [gr-qc].
[7] I. Kolář and A. Mazumdar, “Hamiltonian for scalar field model of infinite derivative gravity,” Phys. Rev. D 101, 124028 (2020), arXiv:2003.00590 [gr-qc].
[6] I. Kolář and P. Krtouš, “Symmetry axes of Kerr-NUT-(A)dS spacetimes,” Phys. Rev. D 100, 064014 (2019), arXiv:1905.06585 [gr-qc].
[5] I. Kolář and P. Krtouš, “NUT-like and near-horizon limits of Kerr-NUT-(A)dS spacetimes,” Phys. Rev. D 95, 124044 (2017), arXiv:1701.03950 [gr-qc].
[4] I. Kolář and P. Krtouš, “Spacetimes with a separable Klein-Gordon equation in higher dimensions,” Phys. Rev. D 93, 024053 (2016), arXiv:1509.01667 [gr-qc].
[3] P. Krtouš, D. Kubizňák, V. P. Frolov, and I. Kolář, “Deformed and twisted black holes with NUTs,” Class. Quant. Grav. 33, 115016 (2016), arXiv:1511.02536 [hep-th].
[2] P. Krtouš, D. Kubizňák, and I. Kolář, “Killing-Yano forms and Killing tensors on a warped space,” Phys. Rev. D 93, 024057 (2016), arXiv:1508.02642 [gr-qc].
[1] I. Kolář and P. Krtouš, “Weak electromagnetic field admitting integrability in Kerr-NUT-(A)dS spacetimes,” Phys. Rev. D 91, 124045 (2015), arXiv:1504.00524 [gr-qc].