# Data Science Meets Optimisation

## About the Workshop

Data science and optimisation are closely related. On the one hand, many problems in data science can be solved using optimisers, on the other hand optimisation problems stated through classical models such as those from Mathematical Programming cannot be considered independent of historical data. Examples are ample. Machine learning often relies on optimisation techniques such as Linear or Integer Programming. Reasoning systems have been applied to constrained pattern and sequence mining tasks. A parallel development of metaheuristic approaches has taken place in the domains of Data Mining and Machine Learning. In the last decades, methods aimed at high level combinatorial optimisation have been shown to strongly profit from configuration and tuning tools building on historical data. Algorithm selection has since the seventies of the previous century been considered as a tool to identify the most appropriate algorithm for a given instance. Empirical Model Learning uses Machine Learning models to approximate the behavior of a system, and such empirical models can be embedded into an optimisation model for efficiently finding optimal system configurations.

This workshop is referred as W32 in the IJCAI 2019 program.

## Aim, Topics and Call for Papers

The aim of the workshop is to organise an open discussion and exchange of ideas by researchers from Data Science and Operations Research domains in order to identify how techniques from these two fields can benefit each other. The program committee invites submissions that include but are not limited to the following topics:

- Applying Data Science and Machine Learning methods to solve Combinatorial Optimisation problems, such as algorithm selection based on historical data, speeding up (or driving) the search process using Machine Learning, and handling uncertainties of prediction models for decision making.
- Using optimisation algorithms in developing Machine Learning models, e.g. formulating the problem of learning predictive models as MIP, constraint programming (CP), or satisfiability (SAT). Tuning machine learning models using search algorithms and metaheuristics. Learning in the presence of constraints.
- Embedding methods, e.g. combining Machine Learning with Combinatorial Optimization, model transformations and solver selection, reasoning over Machine Learning models.
- Formal analysis of Machine Learning models via optimization or constraint satisfaction techniques, including safety checking and verification via SMT or MIP, generation of adversarial examples via similar combinatorial techniques.
- Computing explanations for ML model via techniques developed for optimization or constraint reasoning systems
- Applications of integration of techniques of Data Science and Optimization.

Authors are invited to send in a contribution in the form of a position paper. The program committee will select the papers to be presented at the workshop according to their suitability to the aims. Finished work highlighting the opportunities will be welcomed, as will be sound descriptions and elaborations on good ideas. Contributors will be invited to submit extended articles to a post-proceedings.

## Submission

We invite the following submissions (all in the IJCAI proceedings format, see: https://www.ijcai.org/authors_kit ):

- Submission of original work up to 8 pages in length.
- Submission of work in progress with preliminary results, and position papers, up to 6 pages in length.
- Published journal/conference papers in the form of a 2-pages abstract.

The program committee will select the papers to be presented at the workshop according to their suitability to the aims. Contributors will be invited to submit extended articles to a post-conference special issue.

Submissions through: https://easychair.org/conferences/?conf=ijcai2019dso

## Important Dates

~~Apr 20,~~**May 17 2019:**deadline for submitting contributions~~May 17~~**June 10****2019**: notification of acceptance

## Format and Schedule

The workshop will last a full day (9AM to 5PM), and it willl include both contributed and invited talks by experts in the field.

The detailed schedule will be made available after the list of accepted papers is finalized.

## Organization

The workshop co-chairs are:

- Patrick De Causmaecker (KU Leuven, BE)
- Michele Lombardi (University of Bologna, IT)
- Yingqian Zhang (TU Eindhoven, NL)

The technical program committee is currently being finalized.