Extremely long range Josephson effect across a half metallic ferromagnet
Universidad Complutense de Madrid
November 25, 2021
12:00 CET
The Josephson effect results from the coupling of two superconductors across a non-superconducting spacer to yield a quantum coherent state. In ferromagnets, singlet (opposite-spin) Cooper pairs decay over very short distances, and thus Josephson coupling requires a nanometric spacer. This is unless equal-spin triplet pairs are generated which, theoretically, can couple superconductors across much longer distances. Despite many experimental hints of triplet superconductivity at ferromagnet/superconductor interfaces, long range triplet Josephson effects across ferromagnetic barriers have remained elusive. In this talk I will discuss a micron-range Josephson coupling in planar junctions across the half-metallic ferromagnet La0.7Sr0.3MnO3 combined with the high-temperature superconductor YBa2Cu3O7. These display the hallmarksof the Josephson physic, namely critical current oscillations due to flux quantization (Fraunhofer pattern) and phase locking under microwave excitation (Shapiro steps) [1]. The marriage of high-temperature quantum coherent transport and full spin polarization brings unique opportunities for the practical realization of superconducting spintronics, and enables novel strategies for devices in quantum technologies.
[1] Nature Mater (2021), in print
Work done in collaboration with D. Sanchez-Manzano1, S. Mesoraca2, F. Cuellar1, M. Cabero3, V. Rouco1, G. Orfila1, X. Palermo2, A. Balan2, L. Marcano5, A. Sander2, M. Rocci1, J. Garcia-Barriocanal 5, F. Gallego1, J. Tornos1, A. Rivera1, F. Mompean6., M. Garcia-Hernandez 6, J. M. Gonzalez-Calbet3, C. Leon1, S. Valencia5, C. Feuillet-Palma7, N. Bergeal7, A.I. Buzdin8, J. Lesueur7, Javier E. Villegas2, J. Santamaria1,*.
1 GFMC. Dept. Fisica de Materiales. Facultad de Fisica. Universidad Complutense. 28040 Madrid
2 Unité Mixte de Physique, CNRS, Thales, Université Paris-Saclay, 91767 Palaiseau. France
3 Centro Nacional de Microscopia Electronica. Universidad Complutense 28040 Madrid.
4 Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Strasse 15, D-12489, Berlin, Germany
5 Characterization Facility, University of Minnesota, 100 Union St, Minneapolis, MN 55455, USA
6 Instituto de Ciencia de Materiales de Madrid ICMM-CSIC 28049 Cantoblanco. Spain
7 Laboratoire de Physique et d’Etude des Matériaux, CNRS, ESPCI Paris, PSL Research University, UPMC, 75005, Paris, France
8 Université Bordeaux, CNRS, LOMA, UMR 5798, F-33405 Talence, France