Whilest testing the resampling algorithms, we put together a lot of hierarchical datasets with different characteristics and from different application domains. As these datasets are freely available for distribution, we made them all available for download here.
[1] Klimt, B. and Yang, Y. (2004). Introducing the enron corpus. In Proceedings of the Conference on Email and Anti-Spam (CEAS).
[2] Turnbull, D., Barrington, L., Torres, D., and Lanckriet, G. (2007). Towards musical query-by-semantic-description using the cal500 data set. In Proceedings of the Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pages 439-446. ACM.
[3] Trohidis, K., Tsoumakas, G., Kalliris, G., and Vlahavas, I. P. (2008). Multi-label classification of music into emotions. In Proceedings of the International Society for Music Information Retrieval Conference (ISMIR), volume 8, pages 325-330.
[4] Briggs, F., Huang, Y., Raich, R., Eftaxias, K., Lei, Z., Cukierski, W., Hadley, S. F., Hadley, A., Betts, M., Fern, X. Z., et al. (2013). The 9th annual mlsp competition: New methods for acoustic classification of multiple simultaneous bird species in a noisy environment. In Proceedings of the IEEE International Workshop on Machine Learning for Signal Processing (MLSP), pages 1-8. IEEE.
[5] Parmezan, A. R. S., Souza, V. M., and Batista, G. E. (2018). Towards hierarchical classification of data streams. In Iberoamerican Congress on Pattern Recognition, pages 314-322. Springer.
[6] Metz, J., Freitas, A. A., Monard, M. C., and Cherman, E. A. (2011). A study on the selection of local training sets for hierarchical classification tasks. Encontro Nacional de Inteligncia Artificial, pages 572-583.
[7] Dimitrovski, I., Kocev, D., Loskovska, S., and Dzeroski, S. (2011). Hierarchical annotation of medical images. Pattern Recognition, 44(10-11):2436-2449.
[8] Clare, A. and King, R. D. (2003). Predicting gene function in saccharomyces cerevisiae. Bioinformatics, 19(2):42-49.
[9] Defferrard, M., Benzi, K., Vandergheynst, P., and Bresson, X. (2017). FMA: A dataset for music analysis. In Proceedings of the International Society for Music Information Retrieval Conference (ISMIR).
[10] Dimitrovski, I., Kocev, D., Loskovska, S., and Dzeroski, S. (2012). Hierarchical classification of diatom images using ensembles of predictive clustering trees. Ecological Informatics, 7(1):19-29.