Research

Vertebrate eye development

The vertebrate eye develops from precisely aligned tissues including the future retina (red) and lens (green). These tissues develop in a coordinated fashion, controlled by the interactive exchange of molecular signals.

Genes to geometry

The eye develops as a system of three-dimensional tissues. To learn how they take shape we must relate multi-scale regulatory information with the emergent geometry.

We developed software tools that align 3-D imaging data from multiple embryos in order to map molecular, genetic and cellular processes onto the developing anatomy.

Read the paper...

Aligning the lens and retina

Classical experiments suggested that the optic vesicle (future retina) instructs the lens to develop at the correct time and place, but the molecular nature of that instruction has remained elusive.

More recent work from the Streit lab showed that the optic vesicle's role is more permissive than instructive, because it shelters the future lens from the inhibitory influence of near-by neural crest cells - removing the neural crest cells causes ectopic lens development.

Building on previous work, we were able to determine the nature of this lens inhibition, establishing a molecular mechanism for the alignment of lens and retina.

Read the paper...

Controlling a 'master control gene'

The transcription factor-coding gene Pax6 has been called a 'master control gene' for eye development. Not only is it required for healthy eye development, it is also a potent activator of eye development: inappropriate activation of the Pax6 gene can cause eyes to develop ectopically.

It is therefore important to have a means of inhibiting Pax6 gene activity. We were able to identify one such mechanism - the TGF-beta signalling pathway is able to suppress activity of the Pax6 gene product.

Read the paper...