Geology (from Ancient Greek   (g) 'earth', and  o (-loga) 'study of, discourse')[1][2] is a branch of natural science concerned with the Earth and other astronomical objects, the rocks of which they are composed, and the processes by which they change over time.[3] Modern geology significantly overlaps all other Earth sciences, including hydrology. It is integrated with Earth system science and planetary science.

Geology describes the structure of the Earth on and beneath its surface and the processes that have shaped that structure. Geologists study the mineralogical composition of rocks in order to get insight into their history of formation. Geology determines the relative ages of rocks found at a given location; geochemistry (a branch of geology) determines their absolute ages.[4] By combining various petrological, crystallographic, and paleontological tools, geologists are able to chronicle the geological history of the Earth as a whole. One aspect is to demonstrate the age of the Earth. Geology provides evidence for plate tectonics, the evolutionary history of life, and the Earth's past climates.


Geology Ppt Free Download


DOWNLOAD 🔥 https://urllie.com/2y3HTB 🔥



Geologists broadly study the properties and processes of Earth and other terrestrial planets. Geologists use a wide variety of methods to understand the Earth's structure and evolution, including fieldwork, rock description, geophysical techniques, chemical analysis, physical experiments, and numerical modelling. In practical terms, geology is important for mineral and hydrocarbon exploration and exploitation, evaluating water resources, understanding natural hazards, remediating environmental problems, and providing insights into past climate change. Geology is a major academic discipline, and it is central to geological engineering and plays an important role in geotechnical engineering.

A rock is any naturally occurring solid mass or aggregate of minerals or mineraloids. Most research in geology is associated with the study of rocks, as they provide the primary record of the majority of the geological history of the Earth. There are three major types of rock: igneous, sedimentary, and metamorphic. The rock cycleillustrates the relationships among them (see diagram).

Geologists also study unlithified materials (referred to as superficial deposits) that lie above the bedrock.[6] This study is often known as Quaternary geology, after the Quaternary period of geologic history, which is the most recent period of geologic time.

Transform boundaries, such as the San Andreas Fault system, resulted in widespread powerful earthquakes. Plate tectonics also has provided a mechanism for Alfred Wegener's theory of continental drift,[11] in which the continents move across the surface of the Earth over geological time. They also provided a driving force for crustal deformation, and a new setting for the observations of structural geology. The power of the theory of plate tectonics lies in its ability to combine all of these observations into a single theory of how the lithosphere moves over the convecting mantle.

Methods for relative dating were developed when geology first emerged as a natural science. Geologists still use the following principles today as a means to provide information about geological history and the timing of geological events.

The principle of uniformitarianism states that the geological processes observed in operation that modify the Earth's crust at present have worked in much the same way over geological time.[16] A fundamental principle of geology advanced by the 18th-century Scottish physician and geologist James Hutton is that "the present is the key to the past." In Hutton's words: "the past history of our globe must be explained by what can be seen to be happening now."[17]

The principle of intrusive relationships concerns crosscutting intrusions. In geology, when an igneous intrusion cuts across a formation of sedimentary rock, it can be determined that the igneous intrusion is younger than the sedimentary rock. Different types of intrusions include stocks, laccoliths, batholiths, sills and dikes.

Geologists use a number of fields, laboratory, and numerical modeling methods to decipher Earth history and to understand the processes that occur on and inside the Earth. In typical geological investigations, geologists use primary information related to petrology (the study of rocks), stratigraphy (the study of sedimentary layers), and structural geology (the study of positions of rock units and their deformation). In many cases, geologists also study modern soils, rivers, landscapes, and glaciers; investigate past and current life and biogeochemical pathways, and use geophysical methods to investigate the subsurface. Sub-specialities of geology may distinguish endogenous and exogenous geology.[23]

Among the most well-known experiments in structural geology are those involving orogenic wedges, which are zones in which mountains are built along convergent tectonic plate boundaries.[39] In the analog versions of these experiments, horizontal layers of sand are pulled along a lower surface into a back stop, which results in realistic-looking patterns of faulting and the growth of a critically tapered (all angles remain the same) orogenic wedge.[40] Numerical models work in the same way as these analog models, though they are often more sophisticated and can include patterns of erosion and uplift in the mountain belt.[41] This helps to show the relationship between erosion and the shape of a mountain range. These studies can also give useful information about pathways for metamorphism through pressure, temperature, space, and time.[42]

With the advent of space exploration in the twentieth century, geologists have begun to look at other planetary bodies in the same ways that have been developed to study the Earth. This new field of study is called planetary geology (sometimes known as astrogeology) and relies on known geological principles to study other bodies of the solar system. This is a major aspect of planetary science, and largely focuses on the terrestrial planets, icy moons, asteroids, comets, and meteorites. However, some planetary geophysicists study the giant planets and exoplanets.[48]

Although the Greek-language-origin prefix geo refers to Earth, "geology" is often used in conjunction with the names of other planetary bodies when describing their composition and internal processes: examples are "the geology of Mars" and "Lunar geology". Specialized terms such as selenology (studies of the Moon), areology (of Mars), etc., are also in use.

Economic geology is a branch of geology that deals with aspects of economic minerals that humankind uses to fulfill various needs. Economic minerals are those extracted profitably for various practical uses. Economic geologists help locate and manage the Earth's natural resources, such as petroleum and coal, as well as mineral resources, which include metals such as iron, copper, and uranium.

Mining geology consists of the extractions of mineral resources from the Earth. Some resources of economic interests include gemstones, metals such as gold and copper, and many minerals such as asbestos, perlite, mica, phosphates, zeolites, clay, pumice, quartz, and silica, as well as elements such as sulfur, chlorine, and helium.

Engineering geology is the application of geological principles to engineering practice for the purpose of assuring that the geological factors affecting the location, design, construction, operation, and maintenance of engineering works are properly addressed. Engineering geology is distinct from geological engineering, particularly in North America.

Geology and geological principles can be applied to various environmental problems such as stream restoration, the restoration of brownfields, and the understanding of the interaction between natural habitat and the geological environment. Groundwater hydrology, or hydrogeology, is used to locate groundwater,[51] which can often provide a ready supply of uncontaminated water and is especially important in arid regions,[52] and to monitor the spread of contaminants in groundwater wells.[51][53]

Geologists and geophysicists study natural hazards in order to enact safe building codes and warning systems that are used to prevent loss of property and life.[57] Examples of important natural hazards that are pertinent to geology (as opposed those that are mainly or only pertinent to meteorology) are:

In 1763, Mikhail Lomonosov published his treatise On the Strata of Earth.[74] His work was the first narrative of modern geology, based on the unity of processes in time and explanation of the Earth's past from the present.[75]

Much of 19th-century geology revolved around the question of the Earth's exact age. Estimates varied from a few hundred thousand to billions of years.[82] By the early 20th century, radiometric dating allowed the Earth's age to be estimated at two billion years. The awareness of this vast amount of time opened the door to new theories about the processes that shaped the planet.

Some of the most significant advances in 20th-century geology have been the development of the theory of plate tectonics in the 1960s and the refinement of estimates of the planet's age. Plate tectonics theory arose from two separate geological observations: seafloor spreading and continental drift. The theory revolutionized the Earth sciences. Today the Earth is known to be approximately 4.5 billion years old.[15]

ID posts must be submitted as top-level comments in the monthly pinned thread. ID posts submitted to r/geology in any other way will be removed. Please take the time to read the pinned thread and provide the additional information that will help us identify your sample.

The moderator team believes that it is not the place for r/geology subscribers to answer homework questions. The first point of contact for help should be the course/school/college/university instructor who assigned the work. Obvious transcriptions and/or screenshots of this type of material will be removed. 2351a5e196

how to download a keyboard

download post office address

how to speed up genshin impact download mobile

opnet it guru academic edition 9.1 free download

how to download remote play on pc