Preprints
[2] G. Meglioli, F. Oliva and F. Petitta, Global existence for a Leibenson type equation with reaction on Riemannian manifolds, arXiv:2505.08304, under review.
[1] F. Oliva, F. Petitta and M. F. Stapenhorst, Existence and non-existence phenomena for nonlinear elliptic equations with L1 data and singular reactions, under review.
Accepted papers
[27] A.J. Martinez Aparicio, F. Oliva and F. Petitta, The Sattinger iteration method for 1-Laplace type problems and its application to concave-convex nonlinearities, Calc. Var. 64, 251, (2025).
[26] A.J. Martinez Aparicio, F. Oliva and F. Petitta, Optimal global BV regularity for 1-Laplace type BVP's with singular lower order terms, arXiv: 2405.13793, to appear in Comm. Contemp. Math.
[25] F. Della Pietra and F. Oliva, Some remarks on optimal insulation with Robin boundary condition, Calc. Var. 64, 151 (2025).
[24] F. Oliva and F. Petitta, Singular Elliptic PDEs: an extensive overview, Partial Differ. Equ. Appl. 6, 6 (2025).
[23] F. Balducci, F. Oliva, F. Petitta and M. F. Stapenhorst, Existence and regularity of solutions for the elliptic nonlinear transparent media equation, Discrete Contin. Dyn. Syst. 45 (8), (2025), 2485-2517.
[22] D. Giachetti, F. Oliva and F. Petitta, Bounded solutions for non-parametric mean curvature problems with nonlinear terms, J. Geom. Anal. 34, 265 (2024).
[21] F. Oliva, F. Petitta and S. Segura de León, The role of absorption terms in Dirichlet problems for the prescribed mean curvature equation, Nonlinear Differ. Equ. Appl., 31, 53 (2024).
[20] F. Balducci, F. Oliva and F. Petitta, Finite energy solutions for nonlinear elliptic equations with competing gradient, singular and L1 terms, Journal of Differential Equations, 391, (2024), 334–369.
[19] F. Della Pietra, F. Oliva and S. Segura de León, On a nonlinear Robin problem with an absorption term on the boundary and L1 data, Advances in Nonlinear Analysis 13 (1), (2024), 20230118.
[18] F. Della Pietra, F. Oliva and S. Segura de León, Behaviour of solutions to p-Laplacian with Robin boundary conditions as p goes to 1, Proc. A Royal Soc. Edinburgh 154 (1), (2024), 105-130.
[17] R. Durastanti and F. Oliva, The Dirichlet problem for possibly singular elliptic equations with degenerate coercitivity, Advances in Differential Equations 29 (5/6), (2024), 291-338.
[16] F. Della Pietra, C. Nitsch, F. Oliva and C. Trombetti, On the behaviour of the first eigenvalue of the p-Laplacian with Robin boundary conditions as p goes to 1, Advances in Calculus of Variations 16 (4), (2023), 1123-1135.
[15] R. Durastanti and F. Oliva, Comparison Principle For Elliptic Equations With Mixed Singular Nonlinearities, Potential Analysis 57 (1), (2022), 83-100.
[14] D. Giachetti, F. Oliva and F. Petitta, 1-Laplacian Type Problems With Strongly Singular Nonlinearities And Gradient Terms, Commun. Contemp. Math., 24 (10), (2022), article number: 2150081.
[13] M. Magliocca and F. Oliva, On some parabolic equations involving superlinear singular gradient terms, Journal Evolution Equations, 21 (2), (2021), 2547-2590.
[12] M. Latorre, F. Oliva, F. Petitta and S. Segura de León, The Dirichlet problem for the 1-Laplacian with a general singular term and L1-data, Nonlinearity ,34 (3), (2021), 1792-1816.
[11] F. Oliva, Existence and uniqueness of solutions to some singular equations with natural growth, Annali di Matematica Pura ed Applicata, 200 (1), 2021, 287-314.
[10] F. Oliva, B. Sciunzi and G. Vaira, Radial symmetry for a quasilinear elliptic equation with a critical Sobolev growth and Hardy potential, Journal de Mathématiques Pures et Appliquées, 140, (2020), 89-109.
[9] F. Oliva and F. Petitta, A nonlinear parabolic problem with singular terms and nonregular data, Nonlinear Analysis: Theory, Methods, Applications, 194, (2020), 111472.
[8] F. Oliva, Regularizing effect of absorption terms in singular problems, Journal of mathematical analysis and applications, 472 (1), (2019), 1136-1166.
[7] V. De Cicco, D. Giachetti, F. Oliva and F. Petitta, The Dirichlet problem for singular elliptic equations with general nonlinearities, Calc. Var., 58, 129 (2019).
[6] L. M. De Cave, R. Durastanti and F. Oliva, Existence and uniqueness results for possibly singular nonlinear elliptic equations with measure data, Nonlinear Differ. Equ. Appl. (2018) 25:18.
[5] F. Oliva and F. Petitta, Finite and Infinite energy solutions of singular elliptic problems: Existence and Uniqueness, Journal of Differential Equations, 264 (2018), 311-340.
[4] L. M. De Cave, F. Oliva and M. Strani, Existence of solutions to a non-variational singular elliptic system with unbounded weights, Mathematische Nachricten, 290 (2-3), (2017), 1-12.
[3] L. M. De Cave and F. Oliva, On the regularizing effect of some absorption and singular lower order terms in classical Dirichlet problems with L1 data, Journal of Elliptic and Parabolic Equations, 2 (1), (2016), 73-85.
[2] F. Oliva and F. Petitta, On a singular elliptic equation with a general measure source, ESAIM COCV , 22 (1), (2016), 289-308.
[1] L. M. De Cave and F. Oliva, Elliptic equations with general singural lower order term and measure data, Nonlinear Analysis: Theory, Methods, Applications, 128, (2015) 391-411.
[*] F. Oliva, Existence and uniqueness results for some singular elliptic problems with irregular data, Phd thesis. Supervisor: Francesco Petitta.
[*] F. Oliva, Existence methods for semilinear elliptic equations with an absorption term and measure data, Graduate thesis. Supervisors: Francesco Petitta, Luigi Orsina.