ES 654: Machine Learning [2020]

  • Instructor: Nipun Batra (nipun.batra@iitgn.ac.in)
  • Teaching Assistants: Indradeep (indra.mastan@iitgn.ac.in, Supratim (supratim.shit@iitgn.ac.in), Pankaj Pandey, Ritik Dutta, Varun Gohil, Abhinav Narayan Harish, Shreyas Singh
  • Course Timings: 5 PM to 6:30 PM on Monday and Wednesday (1/102)
  • Office hours: Monday (12 Noon to 1): Please try to stick to this time unless it is an emergency
  • Course Calendar and Course FAQs

Reference textbooks:

  1. Gareth James, Daniela Witten, Trevor Hastie and Robert Tibshirani. An Introduction to Statistical Learning with Applications in R
  2. Christopher Bishop. Pattern Recognition and Machine Learning. Springer, 2006.[Freely available online]
  3. Friedman J, Hastie T, Tibshirani R. The elements of statistical learning. New York, NY, USA:: Springer series in statistics; 2001.[Freely available online]
  4. Duda RO, Hart PE, Stork DG. Pattern classification. John Wiley & Sons; 2012 Nov 9.
  5. Mitchell TM. Machine learning. 1997. Burr Ridge, IL: McGraw Hill. 1997;45(37):870-7.
  6. Murphy, K. Machine Learning: A Probabilistic Perspective. MIT Press
  7. Goodfellow I, Bengio Y, Courville A, Bengio Y. Deep learning. Cambridge: MIT press; 2016 Nov 18.[Freely available online]

Grading policy:

  • Project (in groups of 4 or 5) (Some ideas from instructors), and some ideas from a Stanford ML course, last year's course : 32%
    • Project proposal report : 3%
    • Phase-I presentation : 5%
    • Phase-II presentation : 5%
    • Final project 3 minute madness [See 3MT for inspiration] : 5%
    • Final project demo and poster : 10%
    • Final report : 4%
  • 3 Quizzes worth 22% total:
    • Quiz 1 : 6%
    • Quiz 2: 8%
    • Quiz 3: 8%
  • End semester : 10%
  • 6 Programming Homework Assignments (No credit for late submission) [with viva] : 36%
    • One of these might include a Kaggle competition/Eval-AI