Postal address:Département de mathématiques,Université du Québec à Montréal,PO Box 8888, centre-ville,Montréal H3C 3P8,Québec, Canada
Duncan McCoy
I am an assistant professor of mathematics at l'Université du Québec à Montréal, where I hold a Canada Research Chair in low-dimensional topology. My research is concentrated on 3-manifolds, 4-manifolds and their applications to knot theory.
Previously, I was a Bing Postdoctoral Fellow at the University of Texas at Austin and I completed my PhD at the University of Glasgow in 2016. You can explore my full mathematical lineage here. My thesis is available from the arXiv and the University of Glasgow's repository.
You may also appreciate some unreasonably amusing number theory.
Preprints:
Cusp types of arithmetic hyperbolic manifolds
-with C. Sell - arXivThe search for alternating surgeries
- with K. Baker & M. Kegel - arXivTwo curious strongly invertible L-space knots
- with K. Baker & M. Kegel - arXivQuasi-alternating surgeries
- with K. Baker & M. Kegel - arXivNon-integer characterizing slopes and knot Floer homology - arXiv
Definite fillings of lens spaces
- with JH. Park & P. Aceto - accepted J. Differential Geom. - arXivA survey on embeddings of 3-manifolds in definite 4-manifolds
- with J. Park & P. Aceto -arXiv
Publications:
Doubly slice Montesinos links
- with C. McDonald - Michigan Math. J. 74 (1), (2024), 85-117 - arXivCharacterizing slopes for the (-2,3,7)-pretzel knot
-Canad. Math. Bull. 66-3 (2023), 937-950 - arXiv
The realization problem for non-integer Seifert fibered surgeries
- with A. Issa - Algebr. Geom. Topol. 23-4 (2023), 1501-1550- arXivThe Montesinos trick for proper rational tangle replacement
- with R. Zentner - Proc. Amer. Math. Soc. 151 (2023), no. 4, 1811–1822 - arXivNon-simply connected symplectic fillings of lens spaces
- with J. Park & P. Aceto - Bull. London Math. Soc. 54-3 (2022), 1010--1026 - arXivSurgeries, sharp 4-manifolds and the Alexander polynomial
- Algebr. Geom. Topol. 21-5 (2021), 2649--2676 - arXivNull-homologous twisting and the algebraic genus
- 2019–20 MATRIX annals, 147--165, Springer 2021 - arXivGaps between consecutive untwisting numbers
- Glasgow. Math. J. 63 (2021), no. 1, 59-67 - arXivNon-integer characterizing slopes for torus knots
- Comm. Anal. Geom. 28 (2020), no. 7, 1647-1682- arXivSmoothly embedding Seifert fibered spaces in S^4
- with A. Issa -Trans. Amer. Math. Soc. 373 (2020), no. 7, 4933–4974 - arXivOn Seifert fibered spaces bounding definite manifolds
- with A. Issa - Pacific J. Math. 304 (2020), No. 2, 463–480 - arXivOn the characterising slopes of hyperbolic knots
- Math. Res. Let. 26 (2019), no. 5, 1517-1526 - arXivOn L-space knots obtained from unknotting arcs in alternating diagrams
- with A. Donald & F. Vafaee - New York J. Math. 25 (2019), 518–540 - arXivOn calculating the slice genera of 11- and 12-crossing knots
- with L. Lewark - Exp. Math. 28 (2019), no. 1, 81–94 - arXivBounds on alternating surgery slopes
- Algebr. Geom. Topol. 17 (2017), no. 5, 2603–2634 - arXivAlternating knots with unknotting number one
- Adv. Math. 305 (2017), 757–802 - arXivOn 2-bridge knots with differing smooth and topological slice genera
- with P. Feller - Proc. Amer. Math. Soc. 144 (2016), no. 12, 5435–5442 - arXivNon-integer surgery and branched double covers of alternating knots
- J. Lond. Math. Soc. (2) 92 (2015), no. 2, 311–337 - arXiv
Other things:
The Small Seifert Fibred Embeddahedron
-with A. Issa - Mathematical Research Postcards - link