From 2013 to 2017, six large-scale systematic surveys of the GAB were conducted from 200 to 5000 m depth, constituting the deepest systematic biological sampling in Australia. Sampling was conducted on soft sediment and hard substrates, both at pre-determined depth intervals along north-south transect lines and at sites of interest identified by multibeam sonar.

Map of the central and eastern GAB regions showing the sampling stations from each of the six GAB deep water surveys (marked as coloured circles). The sampling transects (pink lines) and target sites (green shaded) are shown


Download We Into Deep Sir Vee The Great


DOWNLOAD 🔥 https://urluss.com/2y3BTh 🔥



The RE2017_C01 survey was conducted with two FCV 3000, 150 hp. sub-sea ROVs, capable of diving to 3000 m, for detailed in situ examination of fauna and geology in seven dive locations at five sites. A variety of mounted sampling tools (chisels, scoops, nets) were used to make targeted collections of biota, and push cores were used to sample sediment fauna. Having the opportunity to carefully select specimens and manipulate them individually into a sampling container at depth, meant successful collection of particularly fragile taxa that were rarely seen intact in the net samples. Specimens were processed according to the same protocols listed above.

There are over 8500 valid sponge species worldwide; of these approximately 83% are in the class Demospongiae, with the remainder distributed amongst the classes Calcarea (8%), Hexactinellida (8%) and Homoscleromorpha (1%) (van Soest et al., 2012). Hexactinellida in particular have predominantly bathyal and abyssal distributions (van Soest et al., 2012), although the other three classes are also found in deep water (van Soest, 2009; Rapp et al., 2011; Domingos et al., 2016). In Australia, the most up-to-date Porifera species list is found at the online register of Codes of Australian Aquatic Biota (CAAB) (Rees et al., 1999). This lists 1710 named sponge species in Australia, approximately 20% of the worldwide count.

Analysis of siphonophores, particularly deep sea varieties, is not normally a priority in biodiversity surveys due to the relative scarcity of both specimens and expertise. The group does merit inclusion here for a particular outcome of the combined surveys.

Antipatharians, also known as black or thorny corals, are colonial anthozoans characterized by a chitinous skeletal axis covered to a varying degree with small spines. Approximately 250 species are presently known, from seven families. Black corals have a wide distribution, inhabiting marine waters from latitudes of 72N to 68S and depths from 2 to 3 m to 8600 m (Wagner et al., 2012; Molodtsova & Opresko, 2017). In the deep sea black corals are most commonly associated with hard substrates, and are themselves important habitats for a range of associated fauna (Wagner et al., 2012). Nine species have been previously reported from the Great Australian Bight from 170 to 4750 m depth, with seven species listing the Great Australian Bight as the type locality (Brook, 1889; Opresko, 1998; Opresko, 1999; Opresko, 2003).

Many taxa were assigned an alpha-numeric code that CSIRO has been consistently applying to deep water octocoral collections in Australian waters (Alderslade et al., 2014; MarLIN, 2014). This is because the octocoral fauna is poorly described in the literature, and many identifications at species level could not be resolved to named species without extensive generic revision (Alderslade et al., 2014). Nevertheless, it was possible to distinguish three new genera and 28 new species of alcyonaceans, 12 new species of pennatulaceans, and an additional 17 new records for Australian waters including 13 new to the GAB. In all probability this reflects a paucity of collecting activities, not only in the GAB but in deep waters around the Australian continent as a whole.

Actiniaria are exclusively soft-bodied hexacorallian cnidarians known from shallow to deep regions of the ocean. In the deep sea, they occur in a range of environments, including abyssal depths (e.g. (Doumenc, 1975; White et al., 1999)), hydrothermal vents and cold seeps (e.g. (Lopez-Gonzalez et al., 2003; Rodrguez, 2012; Zelnio et al., 2009)), and whale falls (Daly & Gusmo, 2007). Symbioses with gastropods and hermit crabs are also known from deep sea environments (Daly et al., 2004; Gusmo & Daly, 2010; Rodrguez & Lpez-Gonzlez, 2008). Actiniaria from deep sea regions of Australia are still relatively unknown; there have only been three species described from Australian representatives: Sicyonis erythrocephala (Pax, 1922), Stylobates birtlesi Crowther, Fautin & Wallace, 2011 and Stylobates loisetteae Fautin, 1987.

Cold deep water Scleractinian corals, commonly called stony corals, differ from their warmer water shallow counterparts in that they are azooxanthallate and most described species are formed from a single solitary polyp with a calcified skeleton (known as cup corals). The exception to this are the genera Solenosmilia which from large colonies and are a cosmopolitan fauna on Australian seamount and shelf locations, including the Great Australian Bight (Cairns, 2004).

Annelids are vastly more numerous in infaunal samples where they are by far the dominant major taxon. Infaunal samples are more representative of the annelid fauna and included families typical of deep sea habitats in other parts of the world. Among the most species-rich were Cirratulidae (seven species), Paraonidae (five species), Sabellidae (seven species), Spionidae (16 species) and Syllidae (15 species). Other typical deep sea annelid families such as Ampharetidae, Amphinomidae, Fauveliopsidae, Goniadidae and Siboglinidae have never been collected in Australian waters at these depths.

The annelid fauna discovered in the deep GAB is, at the family level, broadly representative of annelid faunas at similar depths elsewhere in the world. It is at the species level, however, that informative regional, bathymetric and other ecological distribution patterns are expected to emerge with further study.

Well known in shallow areas, bivalves also occur in the very deepest reaches of the oceans (Knudsen, 1970; Allen, 2008; Kamenev, 2015). They have adapted to the unique conditions of the deep sea and can constitute an important part of the benthos (Allen, 2008). These adaptations include chemosymbiosis to survive in vent or seep environments and multiple evolutions of carnivory, making up for the lack of phytoplankton (Poutiers & Bernard, 1995; Barroso et al., 2016). As with other molluscan groups, shallow water bivalves are reasonably well studied in Australia, but the deep water fauna is poorly understood (Lamprell & Whitehead, 1992; Beesley et al., 1998).

Scaphopods are found at all latitudes and in depths from the littoral fringe to the abyssal (Scarabino & Scarabino, 2011; Davies, 1987), where they inhabit all types of sediments from soft mud and silts to coarse mud and gravels. They are primarily micro-carnivorous generalists in their diets (Shimek, 1990), feeding on foraminiferans, bivalve spat, ostracods, diatoms, small gastropods, marine mites and invertebrate eggs. Many species, including several Australian species, are found over a wide depth range (e.g. Laevidentalium erectum (Sowerby, 1860) recorded from 11 to 2569 m). Compared to other molluscan classes, scaphopods generally exhibit rather conserved morphology and ecology and do not exhibit any particular adaptation to deep sea environments. There are two major systematic groups in the Scaphopoda (the orders Dentaliida and Gadilida) with eleven families, of which eight are present in Australian deep waters (Beesley et al., 1998).

Cephalopods within Australian waters are represented by approximately 230 species, currently grouped into 10 Orders (Reid, 2016a). All are carnivorous, feeding at a range of trophic levels, and occupy all depths from the surface to the sea floor. Many species exhibit diel vertical migration, and may occupy different habitats and depths at different stages in their life cycles. They are both key predators and prey species in marine ecosystems.

The composition of bathyal gastropod assemblages is profoundly influenced by the lack of photosynthetic life, which determines the absence of true herbivorous gastropods. Given the food resource available, the deep sea gastropod fauna is dominated by members of four major feeding guilds: scavengers, deposit-feeders, predators and parasites (Allen, 1983).

Scavengers are represented by a number of families in the subclass Vetigastropoda including the Osteopeltidae (whale and fish bones, (Marshall, 1987)), Lepetellidae (tubes of polychaete worms, empty egg-cases of sharks and rays (Powell, 1979)), and Pseudococculinidae (sunken plant remains (Hickman, 1983)). In the subclass Caenogastropoda, some bathyal species of Buccinidae (e.g. Enigmaticolus, (Fraussen, 2008)) and Nassariidae (Dekker & Dekkers, 2009) are scavengers. Deep sea scavengers in the subclass Cocculiniformia are limpets of the Cocculinidae (Haszprunar, 1987; Marshall, 1986) (herbivorous) and the Bathysciadiidae (Haszprunar, 1988) (feeding on sunken cephalopod beaks). Many of the deposit feeders are vetigastropods, such as species of the families Seguenziidae and Calliotropidae (Kano, 2008), but in this category there are also some caenogastropod families, such as the Rissoidae (Ponder, 1984). Deep sea predators belong to a wide range of phylogenetically diverse caenogastropod groups, such as many conoidean families (e.g. Raphitomidae, Pseudomelatomidae, Drilliidae, and Borsonidae) (Bouchet et al., 2011), which paralyse their polychaete prey by injecting venom through modified arrow-like radular teeth. Other predators include the families Muricidae, Fasciolariidae, Volutidae, Belomitridae and Naticidae, which bore a hole through the shell of their molluscan prey, using their radula and an acid secretion (Carriker, 1998) and the Cassidae, which also use a combination of radula rasping and acid secretion to access the flesh of echinoids (Beu et al., 2008). Among the parasites, the Eulimidae (Caenogastropoda) are always associated with echinoderm hosts, from which they extract the body fluids through a muscular proboscis (Bouchet & And, 1986). Other deep sea ectoparasite species are present in the caenogastropod Epitoniidae (having cnidarian hosts) (Bouchet & And, 1986) and the heterobranch Pyramidellidae, with primarily polychaete hosts (Peas & Roln, 2010). 2351a5e196

download examsoft

download guchi move on

trailer truck games free download

quick media player download

online birthday invitation card maker free download