In the broadest definition, a sensor is a device, module, machine, or subsystem that detects events or changes in its environment and sends the information to other electronics, frequently a computer processor.

Sensors are used in everyday objects such as touch-sensitive elevator buttons (tactile sensor) and lamps which dim or brighten by touching the base, and in innumerable applications of which most people are never aware. With advances in micromachinery and easy-to-use microcontroller platforms, the uses of sensors have expanded beyond the traditional fields of temperature, pressure and flow measurement,[1] for example into MARG sensors.


Download Video Sensor


Download 🔥 https://shoxet.com/2yGAxj 🔥



Analog sensors such as potentiometers and force-sensing resistors are still widely used. Their applications include manufacturing and machinery, airplanes and aerospace, cars, medicine, robotics and many other aspects of our day-to-day life. There is a wide range of other sensors that measure chemical and physical properties of materials, including optical sensors for refractive index measurement, vibrational sensors for fluid viscosity measurement, and electro-chemical sensors for monitoring pH of fluids.

A sensor's sensitivity indicates how much its output changes when the input quantity it measures changes. For instance, if the mercury in a thermometer moves 1 cm when the temperature changes by 1 C, its sensitivity is 1 cm/C (it is basically the slope dy/dx assuming a linear characteristic). Some sensors can also affect what they measure; for instance, a room temperature thermometer inserted into a hot cup of liquid cools the liquid while the liquid heats the thermometer. Sensors are usually designed to have a small effect on what is measured; making the sensor smaller often improves this and may introduce other advantages.[2]

All these deviations can be classified as systematic errors or random errors. Systematic errors can sometimes be compensated for by means of some kind of calibration strategy. Noise is a random error that can be reduced by signal processing, such as filtering, usually at the expense of the dynamic behavior of the sensor.

The sensor resolution or measurement resolution is the smallest change that can be detected in the quantity that is being measured. The resolution of a sensor with a digital output is usually the numerical resolution of the digital output. The resolution is related to the precision with which the measurement is made, but they are not the same thing. A sensor's accuracy may be considerably worse than its resolution.

A chemical sensor is a self-contained analytical device that can provide information about the chemical composition of its environment, that is, a liquid or a gas phase.[5][6] The information is provided in the form of a measurable physical signal that is correlated with the concentration of a certain chemical species (termed as analyte). Two main steps are involved in the functioning of a chemical sensor, namely, recognition and transduction. In the recognition step, analyte molecules interact selectively with receptor molecules or sites included in the structure of the recognition element of the sensor. Consequently, a characteristic physical parameter varies and this variation is reported by means of an integrated transducer that generates the output signal.A chemical sensor based on recognition material of biological nature is a biosensor. However, as synthetic biomimetic materials are going to substitute to some extent recognition biomaterials, a sharp distinction between a biosensor and a standard chemical sensor is superfluous. Typical biomimetic materials used in sensor development are molecularly imprinted polymers and aptamers.[7]

In biomedicine and biotechnology, sensors which detect analytes thanks to a biological component, such as cells, protein, nucleic acid or biomimetic polymers, are called biosensors.Whereas a non-biological sensor, even organic (carbon chemistry), for biological analytes is referred to as sensor or nanosensor. This terminology applies for both in-vitro and in vivo applications.The encapsulation of the biological component in biosensors, presents a slightly different problem that ordinary sensors; this can either be done by means of a semipermeable barrier, such as a dialysis membrane or a hydrogel, or a 3D polymer matrix, which either physically constrains the sensing macromolecule or chemically constrains the macromolecule by bounding it to the scaffold.

A number of MOSFET sensors have been developed, for measuring physical, chemical, biological, and environmental parameters.[14] The earliest MOSFET sensors include the open-gate field-effect transistor (OGFET) introduced by Johannessen in 1970,[14] the ion-sensitive field-effect transistor (ISFET) invented by Piet Bergveld in 1970,[15] the adsorption FET (ADFET) patented by P.F. Cox in 1974, and a hydrogen-sensitive MOSFET demonstrated by I. Lundstrom, M.S. Shivaraman, C.S. Svenson and L. Lundkvist in 1975.[14] The ISFET is a special type of MOSFET with a gate at a certain distance,[14] and where the metal gate is replaced by an ion-sensitive membrane, electrolyte solution and reference electrode.[16] The ISFET is widely used in biomedical applications, such as the detection of DNA hybridization, biomarker detection from blood, antibody detection, glucose measurement, pH sensing, and genetic technology.[16]

MOS technology is the basis for modern image sensors, including the charge-coupled device (CCD) and the CMOS active-pixel sensor (CMOS sensor), used in digital imaging and digital cameras.[17] Willard Boyle and George E. Smith developed the CCD in 1969. While researching the MOS process, they realized that an electric charge was the analogy of the magnetic bubble and that it could be stored on a tiny MOS capacitor. As it was fairly straightforward to fabricate a series of MOS capacitors in a row, they connected a suitable voltage to them so that the charge could be stepped along from one to the next.[17] The CCD is a semiconductor circuit that was later used in the first digital video cameras for television broadcasting.[18]

MOS image sensors are widely used in optical mouse technology. The first optical mouse, invented by Richard F. Lyon at Xerox in 1980, used a 5 m NMOS sensor chip.[21][22] Since the first commercial optical mouse, the IntelliMouse introduced in 1999, most optical mouse devices use CMOS sensors.[23]

MOS monitoring sensors are used for house monitoring, office and agriculture monitoring, traffic monitoring (including car speed, traffic jams, and traffic accidents), weather monitoring (such as for rain, wind, lightning and storms), defense monitoring, and monitoring temperature, humidity, air pollution, fire, health, security and lighting.[25] MOS gas detector sensors are used to detect carbon monoxide, sulfur dioxide, hydrogen sulfide, ammonia, and other gas substances.[26] Other MOS sensors include intelligent sensors[27] and wireless sensor network (WSN) technology.[28]

Sensors are used today almost everywhere. Radar guns bounce microwaves off moving cars. A burglar alarm may use a photosensor to detect when a beam of light has been broken, or may use ultrasonic sound waves that bounce off moving objects. Still other sensors may detect pressure (barometers) or chemicals (Breathalyzers and smoke detectors). Stud finders, used by carpenters to locate wooden studs under a wall, may employ magnets or radar. Wired gloves, which relay information about the position of the fingers, are used in virtual-reality environments. A cheap car alarm may be nothing but a shock sensor, in which a strong vibration will cause two metal surfaces to come together.

A sensor is a device that detects and responds to some type of input from the physical environment. The input can be light, heat, motion, moisture, pressure or any number of other environmental phenomena. The output is generally a signal that is converted to a human-readable display at the sensor location or transmitted electronically over a network for reading or further processing.

Sensors play a pivotal role in the internet of things (IoT). They make it possible to create an ecosystem for collecting and processing data about a specific environment so it can be monitored, managed and controlled more easily and efficiently. IoT sensors are used in homes, out in the field, in automobiles, on airplanes, in industrial settings and in other environments. Sensors bridge the gap between the physical world and logical world, acting as the eyes and ears for a computing infrastructure that analyzes and acts upon the data collected from the sensors.

Sensors can be categorized in multiple ways. One common approach is to classify them as either active or passive. An active sensor is one that requires an external power source to be able to respond to environmental input and generate output. For example, sensors used in weather satellites often require some source of energy to provide meteorological data about the Earth's atmosphere.

A passive sensor, on the other hand, doesn't require an external power source to detect environmental input. It relies on the environment itself for its power, using sources such as light or thermal energy. A good example is the mercury-based glass thermometer. The mercury expands and contracts in response to fluctuating temperatures, causing the level to be higher or lower in the glass tube. External markings provide a human-readable gauge for viewing the temperature.

Some types of sensors, such as seismic and infrared light sensors, are available in both active and passive forms. The environment in which the sensor is deployed typically determines which type is best suited for the application.

Another way in which sensors can be classified is by whether they're analog or digital, based on the type of output the sensors produce. Analog sensors convert the environmental input into output analog signals, which are continuous and varying. Thermocouples that are used in gas hot water heaters offer a good example of analog sensors. The water heater's pilot light continuously heats the thermocouple. If the pilot light goes out, the thermocouple cools, sending a different analog signal that indicates the gas should be shut off. 152ee80cbc

rockchip rk3328 tv box firmware download android nougat 7.1 2

neet motivation wallpaper download

medusa pro software free download