A library is also a collection of implementations of behavior, written in terms of a language, that has a well-defined interface by which the behavior is invoked. For instance, people who want to write a higher-level program can use a library to make system calls instead of implementing those system calls over and over again. In addition, the behavior is provided for reuse by multiple independent programs. A program invokes the library-provided behavior via a mechanism of the language. For example, in a simple imperative language such as C, the behavior in a library is invoked by using C's normal function-call. What distinguishes the call as being to a library function, versus being to another function in the same program, is the way that the code is organized in the system.[1]
Library code is organized in such a way that it can be used by multiple programs that have no connection to each other, while code that is part of a program is organized to be used only within that one program. This distinction can gain a hierarchical notion when a program grows large, such as a multi-million-line program. In that case, there may be internal libraries that are reused by independent sub-portions of the large program. The distinguishing feature is that a library is organized for the purposes of being reused by independent programs or sub-programs, and the user only needs to know the interface and not the internal details of the library.
The value of a library lies in the reuse of standardized program elements. When a program invokes a library, it gains the behavior implemented inside that library without having to implement that behavior itself. Libraries encourage the sharing of code in a modular fashion and ease the distribution of the code.
The behavior implemented by a library can be connected to the invoking program at different program lifecycle phases. If the code of the library is accessed during the build of the invoking program, then the library is called a static library.[2] An alternative is to build the executable of the invoking program and distribute that, independently of the library implementation. The library behavior is connected after the executable has been invoked to be executed, either as part of the process of starting the execution, or in the middle of execution. In this case the library is called a dynamic library (loaded at runtime). A dynamic library can be loaded and linked when preparing a program for execution, by the linker. Alternatively, in the middle of execution, an application may explicitly request that a module be loaded.
Most compiled languages have a standard library, although programmers can also create their own custom libraries. Most modern software systems provide libraries that implement the majority of the system services. Such libraries have organized the services which a modern application requires. As such, most code used by modern applications is provided in these system libraries.
The idea of a computer library dates back to the first computers created by Charles Babbage. An 1888 paper on his Analytical Engine suggested that computer operations could be punched on separate cards from numerical input. If these operation punch cards were saved for reuse then "by degrees the engine would have a library of its own."[3]
In 1947 Goldstine and von Neumann speculated that it would be useful to create a "library" of subroutines for their work on the IAS machine, an early computer that was not yet operational at that time.[4] They envisioned a physical library of magnetic wire recordings, with each wire storing reusable computer code.[5]
Inspired by von Neumann, Wilkes and his team constructed EDSAC. A filing cabinet of punched tape held the subroutine library for this computer.[6] Programs for EDSAC consisted of a main program and a sequence of subroutines copied from the subroutine library.[7] In 1951 the team published the first textbook on programming, The Preparation of Programs for an Electronic Digital Computer, which detailed the creation and the purpose of the library.[8]
Another major contributor to the modern library concept came in the form of the subprogram innovation of FORTRAN. FORTRAN subprograms can be compiled independently of each other, but the compiler lacked a linker. So prior to the introduction of modules in Fortran-90, type checking between FORTRAN[NB 1] subprograms was impossible.[11]
Simula was the first object-oriented programming language, and its classes were nearly identical to the modern concept as used in Java, C++, and C#. The class concept of Simula was also a progenitor of the package in Ada and the module of Modula-2.[12] Even when developed originally in 1965, Simula classes could be included in library files and added at compile time.[13]
Libraries are important in the program linking or binding process, which resolves references known as links or symbols to library modules. The linking process is usually automatically done by a linker or binder program that searches a set of libraries and other modules in a given order. Usually it is not considered an error if a link target can be found multiple times in a given set of libraries. Linking may be done when an executable file is created (static linking), or whenever the program is used at runtime (dynamic linking).
Some programming languages use a feature called smart linking whereby the linker is aware of or integrated with the compiler, such that the linker knows how external references are used, and code in a library that is never actually used, even though internally referenced, can be discarded from the compiled application. For example, a program that only uses integers for arithmetic, or does no arithmetic operations at all, can exclude floating-point library routines. This smart-linking feature can lead to smaller application file sizes and reduced memory usage.
Some references in a program or library module are stored in a relative or symbolic form which cannot be resolved until all code and libraries are assigned final static addresses. Relocation is the process of adjusting these references, and is done either by the linker or the loader. In general, relocation cannot be done to individual libraries themselves because the addresses in memory may vary depending on the program using them and other libraries they are combined with. Position-independent code avoids references to absolute addresses and therefore does not require relocation.
When linking is performed during the creation of an executable or another object file, it is known as static linking or early binding. In this case, the linking is usually done by a linker, but may also be done by the compiler.[14] A static library, also known as an archive, is one intended to be statically linked. Originally, only static libraries existed. Static linking must be performed when any modules are recompiled.
A shared library or shared object is a file that is intended to be shared by executable files and further shared object files. Modules used by a program are loaded from individual shared objects into memory at load time or runtime, rather than being copied by a linker when it creates a single monolithic executable file for the program.
Although originally pioneered in the 1960s, dynamic linking did not reach operating systems used by consumers until the late 1980s. It was generally available in some form in most operating systems by the early 1990s. During this same period, object-oriented programming (OOP) was becoming a significant part of the programming landscape. OOP with runtime binding requires additional information that traditional libraries do not supply. In addition to the names and entry points of the code located within, they also require a list of the objects they depend on. This is a side-effect of one of OOP's core concepts, inheritance, which means that parts of the complete definition of any method may be in different places. This is more than simply listing that one library requires the services of another: in a true OOP system, the libraries themselves may not be known at compile time, and vary from system to system.
Soon the majority of the minicomputer and mainframe vendors instigated projects to combine the two, producing an OOP library format that could be used anywhere. Such systems were known as object libraries, or distributed objects, if they supported remote access (not all did). Microsoft's COM is an example of such a system for local use. DCOM, a modified version of COM, supports remote access.
Class libraries are the rough OOP equivalent of older types of code libraries. They contain classes, which describe characteristics and define actions (methods) that involve objects. Class libraries are used to create instances, or objects with their characteristics set to specific values. In some OOP languages, like Java, the distinction is clear, with the classes often contained in library files (like Java's JAR file format) and the instantiated objects residing only in memory (although potentially able to be made persistent in separate files). In others, like Smalltalk, the class libraries are merely the starting point for a system image that includes the entire state of the environment, classes and all instantiated objects.
Today most class libraries are stored in a package repository (such as Maven Central for Java). Client code explicitly declare the dependencies to external libraries in build configuration files (such as a Maven Pom in Java).
 2e380cc55c