Does it mean that two threads can't change the underlying data simultaneously? Or does it mean that the given code segment will run with predictable results when multiple threads are executing that code segment?

"A class is thread-safe if it behaves correctly when accessed from multiple threads, regardless of the scheduling or interleaving of the execution of those threads by the runtime environment, and with no additional synchronization or other coordination on the part of the calling code."


Download Php Non Thread Safe


Download Zip 🔥 https://urluss.com/2y3Lpb 🔥



Accessing shared variable without locking

This variable could be modified by another thread while executing the function. You want to prevent it with a locking mechanism to be sure of the behavior of your function. General rule of thumb is to keep the lock for the shortest time possible.

It's worth being aware that this sometimes comes at a cost, of computer time and more complex coding, so it isn't always desirable. If a class can be safely used on only one thread, it may be better to do so.

For example, Java has two classes that are almost equivalent, StringBuffer and StringBuilder. The difference is that StringBuffer is thread-safe, so a single instance of a StringBuffer may be used by multiple threads at once. StringBuilder is not thread-safe, and is designed as a higher-performance replacement for those cases (the vast majority) when the String is built by only one thread.

At least in C++, I think of thread-safe as a bit of a misnomer in that it leaves a lot out of the name. To be thread-safe, code typically has to be proactive about it. It's not generally a passive quality.

For a class to be thread-safe, it has to have "extra" features that add overhead. These features are part of the implementation of the class and generally speaking, hidden from the interface. That is, different threads can access any of the class' members without ever having to worry about conflicting with a concurrent access by a different thread AND can do so in a very lazy manner, using some plain old regular human coding style, without having to do all that crazy synchronization stuff that is already rolled into the guts of the code being called.

An example of an internally synchronized (aka. thread-safe or thread proof) system is a restaurant where a host greets you at the door, and disallows you from queueing yourself. The host is part of the mechanism of the restaurant for dealing with multiple customers, and can use some rather tricky tricks for optimizing the seating of waiting customers, like taking the size of their party into account, or how much time they look like they have, or even taking reservations over the phone. The restaurant is internally synchronized because all of this is included "behind the scenes" when you interact with it. You, the customer, don't do any of it. The host does all of it for you.

Should we say that it's thread-unsafe? that's what the implication is if you go with the thread-safe, thread-unsafe bipolar terminology set. It's not a very good set of terms. The better terminology is externally synchronized, The bank lobby is not hostile to being accessed by multiple customers, but it doesn't do the work of synchronizing them either. The customers do that themselves.

This is also called "free threaded," where "free" is as in "free from lice"--or in this case, locks. Well, more accurately, synchronization primitives. That doesn't mean the code can run on multiple threads without those primitives. It just means it doesn't come with them already installed and it's up to you, the user of the code, to install them yourself however you see fit. Installing your own synchronization primitives can be difficult and requires thinking hard about the code, but also can lead to the fastest possible program by allowing you to customize how the program executes on today's hyperthreaded CPUs.

An example everyday analogy of a thread-hostile system is some jerk with a sports car refusing to use their blinkers and changing lanes willy-nilly. Their driving style is thread hostile or unsychronizable because you have no way to coordinate with them, and this can lead to contention for the same lane, without resolution, and thus an accident as two cars attempt to occupy the same space, without any protocol to prevent this. This pattern can also be thought of more broadly as anti-social, though that's less specific to threads and more generally applicable to many areas of programming.

The first and oldest terminology set fails to make the finer distinction between thread hostility and thread compatibility. Thread compatibility is more passive than so-called thread safety, but that doesn't mean the called code is unsafe for concurrent thread use. It just means it's passive about the synchronization that would allow this, putting it off to the calling code, instead of providing it as part of its internal implementation. Thread compatible is how code should probably be written by default in most cases but this is also sadly often erroneously thought of as thread unsafe, as if it's inherently anti safety, which is a major point of confusion for programmers.

NOTE: Many software manuals actually use the term "thread-safe" to refer to "thread-compatible," adding even more confusion to what was already a mess! I avoid the term "thread-safe" and "thread-unsafe" at all costs for this very reason, as some sources will call something "thread-safe" while others will call it "thread-unsafe" because they can't agree on whether you have to meet some extra standards for safety (pre-installed synchronization primitives), or just NOT be hostile to be considered "safe". So avoid those terms and use the smarter terms instead, to avoid dangerous miscommunications with other engineers.

We do that by creating semi-deterministic systems we can rely on. Determinism is expensive, mostly due to the opportunity costs of losing parallelism, pipelining, and reordering. We try to minimize the amount of determinism we need to keep our costs low, while also avoiding making decisions that will further erode what little determinism we can afford. Thus, the semi- prefix. We just want certain little bits of our code's state to be deterministic, while the computational machinery underneath doesn't have to be completely so. Synchronization of threads is about increasing the order and decreasing the chaos in a multi-threaded system because having multiple threads leads to a greater amount of non-determinism naturally which must be subdued somehow.

The highest degree (thread-proof, etc.) means that a system behaves in a predictable manner even if you call it from multiple threads sloppily. It does the work necessary to achieve this itself so you don't have to. It makes this nice interface for you, the programmer writing calling code, so that you can pretend to live in a world without synchronization primitives. Because it's already included them internally. It's also expensive and slow and also somewhat unpredictable when it comes to how long it takes for tasks to complete due to synchronization it's doing, which must always be greater than the amount you need for your specific program because it doesn't know what your code will do. Great for casual coders who code in various scripting languages to do science or something, but aren't themselves writing highly efficient close-to-the-metal code. They don't need to juggle knives.

The second degree (thread-compatible, etc.) means that the system behaves well enough that calling code can reliably detect unpredictability just in time to handle it correctly at runtime using its own installed synchronization primitives. D-I-Y synchronization. BYOSP = Bring Your Own Synchronization primitives. At least you know the code you're calling will play nice with them. This is for professional programmers working closer to the metal.

The third degree (thread-hostile, etc.) means that the system doesn't behave well enough to play with anyone else and can only EVER be run single-threaded without incurring chaos. This is classic early 90s and earlier code, essentially. It was programmed with a lack of awareness about how it might be called or used from multiple threads to such a high degree that even if you try to add those synchronization primitives yourself, it just won't work because it makes old fashioned assumptions that these days seem anti-social and unprofessional.

However, some code only really makes sense called single-threaded and so is still written to be called that way intentionally. This is true especially for software that already has an efficient pipeline and memory access sequence, and doesn't benefit from the main purpose of multi-threading: hiding memory access latencies. Accessing non-cache memory is ridiculously slower than most other instructions. So whenever an application is waiting for some bit of memory access, it should switch to another task thread in the meantime to keep the processor working. Of course, these days, that could mean switching to another coroutine/fiber/etc. within the same thread, when available, because these are much more efficient than a thread context switch. But once even those are exhausted for the time being, it's time to switch threads executing on our core.

But sometimes, you have all your memory accesses nicely packed and sequenced and the last thing you want is to switch to another thread because you've already pipelined your code to handle this as efficiently as possible. Then threads hurt not help. That's one example, but there others.

In general, I think it makes sense to go for thread-compatible though whenever possible while programming code meant to be called, particularly if there's no real reason not to and it just requires your awareness while coding the thing.

Thread-safe-code works as specified, even when entered simultaneously by different threads. This often means, that internal data-structures or operations that should run uninterrupted are protected against different modifications at the same time. 2351a5e196

download imoney loan app

top 50 hillsong worship songs mp3 download

kaleidoscope quilt patterns download

mountain bike xtreme game download

xzr universiteti ikili diplom