The periodic table, also known as the periodic table of the elements, arranges the chemical elements into rows ("periods") and columns ("groups"). It is an icon of chemistry and is widely used in physics and other sciences. It is a depiction of the periodic law, which says that when the elements are arranged in order of their atomic numbers an approximate recurrence of their properties is evident. The table is divided into four roughly rectangular areas called blocks. Elements in the same group tend to show similar chemical characteristics.

Vertical, horizontal and diagonal trends characterize the periodic table. Metallic character increases going down a group and decreases from left to right across a period. Nonmetallic character increases going from the bottom left of the periodic table to the top right.


Download A Periodic Table Pdf


DOWNLOAD 🔥 https://blltly.com/2y2EGd 🔥



The first periodic table to become generally accepted was that of the Russian chemist Dmitri Mendeleev in 1869; he formulated the periodic law as a dependence of chemical properties on atomic mass. As not all elements were then known, there were gaps in his periodic table, and Mendeleev successfully used the periodic law to predict some properties of some of the missing elements. The periodic law was recognized as a fundamental discovery in the late 19th century. It was explained early in the 20th century, with the discovery of atomic numbers and associated pioneering work in quantum mechanics both ideas serving to illuminate the internal structure of the atom. A recognisably modern form of the table was reached in 1945 with Glenn T. Seaborg's discovery that the actinides were in fact f-block rather than d-block elements. The periodic table and law are now a central and indispensable part of modern chemistry.

The periodic table continues to evolve with the progress of science. In nature, only elements up to atomic number 94 exist;[a] to go further, it was necessary to synthesise new elements in the laboratory. Today, while all the first 118 elements are known, thereby completing the first seven rows of the table, chemical characterisation is still needed for the heaviest elements to confirm that their properties match their positions. It is not yet known how far the table will go beyond these seven rows and whether the patterns of the known part of the table will continue into this unknown region. Some scientific discussion also continues regarding whether some elements are correctly positioned in today's table. Many alternative representations of the periodic law exist, and there is some discussion as to whether there is an optimal form of the periodic table.

Each chemical element has a unique atomic number (Z) representing the number of protons in its nucleus.[3] Most elements have multiple isotopes, variants with the same number of protons but different numbers of neutrons. For example, carbon has three naturally occurring isotopes: all of its atoms have six protons and most have six neutrons as well, but about one per cent have seven neutrons, and a very small fraction have eight neutrons. Isotopes are never separated in the periodic table; they are always grouped together under a single element. When atomic mass is shown, it is usually the weighted average of naturally occurring isotopes; but if there are none, the mass of the most stable isotope usually appears, often in parentheses.[4]

In the standard periodic table, the elements are listed in order of increasing atomic number Z. A new row (period) is started when a new electron shell has its first electron. Columns (groups) are determined by the electron configuration of the atom; elements with the same number of electrons in a particular subshell fall into the same columns (e.g. oxygen, sulfur, and selenium are in the same column because they all have four electrons in the outermost p-subshell). Elements with similar chemical properties generally fall into the same group in the periodic table, although in the f-block, and to some respect in the d-block, the elements in the same period tend to have similar properties, as well. Thus, it is relatively easy to predict the chemical properties of an element if one knows the properties of the elements around it.[5]

For reasons of space,[16][17] the periodic table is commonly presented with the f-block elements cut out and positioned placed as a distinct part below the main body.[18][16][9] It reduces the number of element columns from 32 to 18.[16]

Both forms represent the same periodic table.[19] The form with the f-block included in the main body is sometimes called the 32-column[19] or long form;[20] the form with the f-block cut out the 18-column[19] or medium-long form.[20] The 32-column form has the advantage of showing all elements in their correct sequence, but it has the disadvantage of requiring more space.[21] The form chosen is an editorial choice, and does not imply any change of scientific claim or statement. For example, when discussing the composition of group 3, the options can be shown equally (unprejudiced) in both forms.[22]

Periodic tables usually at least show the elements' symbols; many also provide supplementary information about the elements, either via colour-coding or as data in the cells. The above table shows the names and atomic numbers of the elements, and also their blocks, natural occurrences and standard atomic weights. For the short-lived elements without standard atomic weights, the mass number of the most stable known isotope is used instead. Other tables may include properties such as state of matter, melting and boiling points, densities, as well as provide different classifications of the elements.[b]

Today, 118 elements are known, the first 94 of which are known to occur naturally on Earth at present.[28][a] Of the 94 natural elements, eighty have a stable isotope and one more (bismuth) has an almost-stable isotope (with a half-life of 2.011019 years, over a billion times the age of the universe).[31][c] Two more, thorium and uranium, have isotopes undergoing radioactive decay with a half-life comparable to the age of the Earth. The stable elements plus bismuth, thorium, and uranium make up the 83 primordial elements that survived from the Earth's formation.[d] The remaining eleven natural elements decay quickly enough that their continued trace occurrence rests primarily on being constantly regenerated as intermediate products of the decay of thorium and uranium.[e] All 24 known artificial elements are radioactive.[19]

The periodic table is a graphic description of the periodic law,[37] which states that the properties and atomic structures of the chemical elements are a periodic function of their atomic number.[38] Elements are placed in the periodic table according to their electron configurations,[39] the periodic recurrences of which explain the trends in properties across the periodic table.[40]

Starting from the simplest atom, this lets us build up the periodic table one at a time in order of atomic number, by considering the cases of single atoms. In hydrogen, there is only one electron, which must go in the lowest-energy orbital 1s. This electron configuration is written 1s1, where the superscript indicates the number of electrons in the subshell. Helium adds a second electron, which also goes into 1s, completely filling the first shell and giving the configuration 1s2.[40][56][h]

Starting from element 11, sodium, the second shell is full, making the second shell a core shell for this and all heavier elements. The eleventh electron begins the filling of the third shell by occupying a 3s orbital, giving a configuration of 1s2 2s2 2p6 3s1 for sodium. This configuration is abbreviated [Ne] 3s1, where [Ne] represents neon's configuration. Magnesium ([Ne] 3s2) finishes this 3s orbital, and the following six elements aluminium, silicon, phosphorus, sulfur, chlorine, and argon fill the three 3p orbitals ([Ne] 3s2 3p1 through [Ne] 3s2 3p6).[40][56] This creates an analogous series in which the outer shell structures of sodium through argon are analogous to those of lithium through neon, and is the basis for the periodicity of chemical properties that the periodic table illustrates:[40] at regular but changing intervals of atomic numbers, the properties of the chemical elements approximately repeat.[37]

The first eighteen elements can thus be arranged as the start of a periodic table. Elements in the same column have the same number of valence electrons and have analogous valence electron configurations: these columns are called groups. The single exception is helium, which has two valence electrons like beryllium and magnesium, but is typically placed in the column of neon and argon to emphasise that its outer shell is full. (Some contemporary authors question even this single exception, preferring to consistently follow the valence configurations and place helium over beryllium.) There are eight columns in this periodic table fragment, corresponding to at most eight outer-shell electrons.[18] A period begins when a new shell starts filling.[16] Finally, the colouring illustrates the blocks: the elements in the s-block (coloured red) are filling s-orbitals, while those in the p-block (coloured yellow) are filling p-orbitals.[16]

Starting the next row, for potassium and calcium the 4s subshell is the lowest in energy, and therefore they fill it.[40][56] Potassium adds one electron to the 4s shell ([Ar] 4s1), and calcium then completes it ([Ar] 4s2). However, starting from scandium ([Ar] 3d1 4s2) the 3d subshell becomes the next highest in energy. The 4s and 3d subshells have approximately the same energy and they compete for filling the electrons, and so the occupation is not quite consistently filling the 3d orbitals one at a time. The precise energy ordering of 3d and 4s changes along the row, and also changes depending on how many electrons are removed from the atom. For example, due to the repulsion between the 3d electrons and the 4s ones, at chromium the 4s energy level becomes slightly higher than 3d, and so it becomes more profitable to have a [Ar] 3d5 4s1 configuration than an [Ar] 3d4 4s2 one. A similar anomaly occurs at copper.[40] These are violations of the Madelung rule. Such anomalies, however, do not have any chemical significance:[53] most chemistry is not about isolated gaseous atoms,[58] and the various configurations are so close in energy to each other[51] that the presence of a nearby atom can shift the balance.[40] Therefore, the periodic table ignores them and considers only idealised configurations.[39] ff782bc1db

poweramp latest mod download

download hindi audiobooks for free

tiny thief download pc

download floating apps free (multitasking)

lady du umlando mp3 download