In elementary algebra, another way of looking at division by zero is that division can always be checked using multiplication. Considering the 10/0 example above, setting x = 10/0, if x equals ten divided by zero, then x times zero equals ten, but there is no x that, when multiplied by zero, gives ten (or any number other than zero). If, instead of x = 10/0, x = 0/0, then every x satisfies the question "what number x, multiplied by zero, gives zero?"

As the realm of numbers to which these operations can be applied expands there are also changes in how the operations are viewed. For instance, in the realm of integers, subtraction is no longer considered a basic operation since it can be replaced by addition of signed numbers.[4] Similarly, when the realm of numbers expands to include the rational numbers, division is replaced by multiplication by certain rational numbers. In keeping with this change of viewpoint, the question, "Why can't we divide by zero?", becomes "Why can't a rational number have a zero denominator?". Answering this revised question precisely requires close examination of the definition of rational numbers.




Division By Zero Ted Chiang 26.pdf