Preprints
Accepted papers
23. N. Gigli, D. Lučić, and E. Pasqualetto, Duals and pullbacks of normed modules, Accepted in Israel Journal of Mathematics, preprint version: arXiv:2207.04972, (2022).
Published papers
22. S. Di Marino, D. Lučić, and E. Pasqualetto, Representation theorems for normed modules, Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat. 119, 19 (2025).
21. D. Lučić and E. Pasqualetto, An axiomatic theory of normed modules via Riesz spaces, Quarterly Journal of Mathematics, Early online. https://doi.org/10.1093/qmath/haae053, (2024).
20. L. Ambrosio, T. Ikonen, D. Lučić and E. Pasqualetto, Metric Sobolev spaces I: equivalence of definitions, Milan Journal of Mathematics, Early online. https://doi.org/10.1007/s00032-024-00407-7, (2024).
19. D. Lučić and E. Pasqualetto, Yet another proof of the density in energy of Lipschitz functions, Accepted in Manuscripta Mathematica, 175, 421–438, (2024).
18. J. Koivu, D. Lučić, and T. Rajala, Approximation by BV-extension sets via perimeter minimization in metric spaces, International Mathematics Research Notices, Early online. https://doi.org/10.1093/imrn/rnae048, (2023).
17. T. Ikonen, D. Lučić, and E. Pasqualetto, Pullback of a quasiconformal map between arbitrary metric measure spaces, Illinois Journal of Mathematics, https://doi.org/10.1215/00192082-11081290, preprint version: arXiv:2112.07795, (2021).
16. G. Buttazzo, M. S. Gelli and D. Lučić, Mass optimization problem with convex cost, SIAM Journal of Mathematical Analysis, 55:5 (2023), pp. 5617-5642, doi:10.1137/22M1493525.
15. M. S. Gelli and D. Lučić, A note on BV and 1-Sobolev functions on the weighted Euclidean space, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. 33 (2022), no. 4, pp. 757–794, doi:10.4171/RLM/988.
14. D. Lučić and E. Pasqualetto, The metric-valued Lebesgue differentiation theorem in measure spaces and its applications, Advances in Operator Theory, 8 (2023), doi:10.1007/s43036-023-00258-w.
13. D. Lučić and E. Pasqualetto, Gamma-convergence of Cheeger energies with respect to increasing distances, Journal of Mathematical Analysis and Applications, Volume 515, Issue 1, (2022), doi:10.1016/j.jmaa.2022.126415.
12. E. Le Donne, D. Lučić, and E. Pasqualetto, Universal infinitesimal Hilbertianity of sub-Riemannian manifolds, Potential Analysis, (2022), doi:10.1007/s11118-021-09971-8.
11. D. Lučić, E. Pasqualetto, and T. Rajala, Non-Hilbertian tangents to Hilbertian spaces, Proceedings of the Royal Society of Edinburgh Section A: Mathematics, (2022), doi:10.1017/prm.2022.18.
10. D. Lučić, T. Rajala, and J. Takanen, Dimension estimates for the boundary of planar Sobolev extension domains, Advances in Calculus of Variations, (2021), doi:10.1515/acv-2021-0042.
9. D. Lučić, E. Pasqualetto, and T. Rajala, Characterisation of upper gradients on the weighted Euclidean space and applications, Annali di Matematica Pura ed Applicata, 200 (2021), pp. 2473--2513.
8. M. Lewicka and D. Lučić, Dimension reduction for thin films with transversally varying prestrain:the oscillatory and the non-oscillatory case, Communications on Pure and Applied Mathematics, 73 (2020), pp. 1880--1932.
7. S. Di Marino, D. Lučić, and E. Pasqualetto, A short proof of the infinitesimal Hilbertianity of the weighted Euclidean space, Comptes Rendus. Mathématiques , 358 (2020), no. 7, pp. 817--825.
6. D. Lučić, E. Pasqualetto, and T. Rajala, Sharp estimate on the inner distance in planar domains, Arkiv för Matematik, 58 (2020), no. 1, pp. 133--159.
5. D. Lučić and E. Pasqualetto, Infinitesimal Hilbertianity of weighted Riemannian manifolds, Canadian Mathematical Bulletin, 63 (2020), no. 1, pp. 118--140.
4. V. Agostiniani, A. Lucantonio, and D. Lučić, Heterogeneous elastic plates with in-plane modulation of the target curvature and applications to thin gel sheets, ESAIM: Control, Optimisation and Calculus of Variations, 25 (2019), pp. 1--24.
3. D. Lučić and E. Pasqualetto, The Serre--Swan theorem for normed modules, Rendiconti del Circolo Matematico di Palermo 2, 68 (2019), no. 2, pp. 385--404.
2. V. Agostiniani, A. DeSimone, A. Lucantonio, and D. Lučić, Foldable structures made of hydrogel bilayers, Mathematics in Engineering, 1 (2018), pp. 204--223.
1. D. Lučić and M. Varga, Simulation of two-body problem in GeoGebra, Acta Electrotech. Inform., 12.3 (2012), pp. 47--50.
PhD Thesis
D. Lučić, Dimension reduction problems in the modelling of hydrogel thin films, PhD Thesis, (2018), https://iris.sissa.it/handle/20.500.11767/82774.