A computer virus[1] is a type of malware that, when executed, replicates itself by modifying other computer programs and inserting its own code into those programs.[2][3] If this replication succeeds, the affected areas are then said to be "infected" with a computer virus, a metaphor derived from biological viruses.[4]

Virus writers use social engineering deceptions and exploit detailed knowledge of security vulnerabilities to initially infect systems and to spread the virus. Viruses use complex anti-detection/stealth strategies to evade antivirus software.[8] Motives for creating viruses can include seeking profit (e.g., with ransomware), desire to send a political message, personal amusement, to demonstrate that a vulnerability exists in software, for sabotage and denial of service, or simply because they wish to explore cybersecurity issues, artificial life and evolutionary algorithms.[9]


AVG Anti-Virus Free Download With Original Crack


Download 🔥 https://urloso.com/2y25AF 🔥



The first academic work on the theory of self-replicating computer programs was done in 1949 by John von Neumann who gave lectures at the University of Illinois about the "Theory and Organization of Complicated Automata". The work of von Neumann was later published as the "Theory of self-reproducing automata". In his essay von Neumann described how a computer program could be designed to reproduce itself.[12] Von Neumann's design for a self-reproducing computer program is considered the world's first computer virus, and he is considered to be the theoretical "father" of computer virology.[13] In 1972, Veith Risak directly building on von Neumann's work on self-replication, published his article "Selbstreproduzierende Automaten mit minimaler Informationsbertragung" (Self-reproducing automata with minimal information exchange).[14] The article describes a fully functional virus written in assembler programming language for a SIEMENS 4004/35 computer system. In 1980, Jrgen Kraus wrote his Diplom thesis "Selbstreproduktion bei Programmen" (Self-reproduction of programs) at the University of Dortmund.[15] In his work Kraus postulated that computer programs can behave in a way similar to biological viruses.

To avoid detection by users, some viruses employ different kinds of deception. Some old viruses, especially on the DOS platform, make sure that the "last modified" date of a host file stays the same when the file is infected by the virus. This approach does not fool antivirus software, however, especially those which maintain and date cyclic redundancy checks on file changes.[51] Some viruses can infect files without increasing their sizes or damaging the files. They accomplish this by overwriting unused areas of executable files. These are called cavity viruses. For example, the CIH virus, or Chernobyl Virus, infects Portable Executable files. Because those files have many empty gaps, the virus, which was 1 KB in length, did not add to the size of the file.[52] Some viruses try to avoid detection by killing the tasks associated with antivirus software before it can detect them (for example, Conficker). A Virus may also hide its presence using a rootkit by not showing itself on the list of system processes or by disguising itself within a trusted process.[53] In the 2010s, as computers and operating systems grow larger and more complex, old hiding techniques need to be updated or replaced. Defending a computer against viruses may demand that a file system migrate towards detailed and explicit permission for every kind of file access.[citation needed] In addition, only a small fraction of known viruses actually cause real incidents, primarily because many viruses remain below the theoretical epidemic threshold.[54]

While some kinds of antivirus software employ various techniques to counter stealth mechanisms, once the infection occurs any recourse to "clean" the system is unreliable. In Microsoft Windows operating systems, the NTFS file system is proprietary. This leaves antivirus software little alternative but to send a "read" request to Windows files that handle such requests. Some viruses trick antivirus software by intercepting its requests to the operating system. A virus can hide by intercepting the request to read the infected file, handling the request itself, and returning an uninfected version of the file to the antivirus software. The interception can occur by code injection of the actual operating system files that would handle the read request. Thus, an antivirus software attempting to detect the virus will either not be permitted to read the infected file, or, the "read" request will be served with the uninfected version of the same file.[55]

One method of evading signature detection is to use simple encryption to encipher (encode) the body of the virus, leaving only the encryption module and a static cryptographic key in cleartext which does not change from one infection to the next.[60] In this case, the virus consists of a small decrypting module and an encrypted copy of the virus code. If the virus is encrypted with a different key for each infected file, the only part of the virus that remains constant is the decrypting module, which would (for example) be appended to the end. In this case, a virus scanner cannot directly detect the virus using signatures, but it can still detect the decrypting module, which still makes indirect detection of the virus possible. Since these would be symmetric keys, stored on the infected host, it is entirely possible to decrypt the final virus, but this is probably not required, since self-modifying code is such a rarity that finding some may be reason enough for virus scanners to at least "flag" the file as suspicious.[citation needed] An old but compact way will be the use of arithmetic operation like addition or subtraction and the use of logical conditions such as XORing,[61] where each byte in a virus is with a constant so that the exclusive-or operation had only to be repeated for decryption. It is suspicious for a code to modify itself, so the code to do the encryption/decryption may be part of the signature in many virus definitions.[citation needed] A simpler older approach did not use a key, where the encryption consisted only of operations with no parameters, like incrementing and decrementing, bitwise rotation, arithmetic negation, and logical NOT.[61] Some viruses, called polymorphic viruses, will employ a means of encryption inside an executable in which the virus is encrypted under certain events, such as the virus scanner being disabled for updates or the computer being rebooted.[62] This is called cryptovirology.

Polymorphic code was the first technique that posed a serious threat to virus scanners. Just like regular encrypted viruses, a polymorphic virus infects files with an encrypted copy of itself, which is decoded by a decryption module. In the case of polymorphic viruses, however, this decryption module is also modified on each infection. A well-written polymorphic virus therefore has no parts which remain identical between infections, making it very difficult to detect directly using "signatures".[63][64] Antivirus software can detect it by decrypting the viruses using an emulator, or by statistical pattern analysis of the encrypted virus body. To enable polymorphic code, the virus has to have a polymorphic engine (also called "mutating engine" or "mutation engine") somewhere in its encrypted body. See polymorphic code for technical detail on how such engines operate.[65]

As software is often designed with security features to prevent unauthorized use of system resources, many viruses must exploit and manipulate security bugs, which are security defects in a system or application software, to spread themselves and infect other computers. Software development strategies that produce large numbers of "bugs" will generally also produce potential exploitable "holes" or "entrances" for the virus.

Macro viruses have become common since the mid-1990s. Most of these viruses are written in the scripting languages for Microsoft programs such as Microsoft Word and Microsoft Excel and spread throughout Microsoft Office by infecting documents and spreadsheets. Since Word and Excel were also available for Mac OS, most could also spread to Macintosh computers. Although most of these viruses did not have the ability to send infected email messages, those viruses which did take advantage of the Microsoft Outlook Component Object Model (COM) interface.[84][85] Some old versions of Microsoft Word allow macros to replicate themselves with additional blank lines. If two macro viruses simultaneously infect a document, the combination of the two, if also self-replicating, can appear as a "mating" of the two and would likely be detected as a virus unique from the "parents".[86]

A virus may also send a web address link as an instant message to all the contacts (e.g., friends and colleagues' e-mail addresses) stored on an infected machine. If the recipient, thinking the link is from a friend (a trusted source) follows the link to the website, the virus hosted at the site may be able to infect this new computer and continue propagating.[87] Viruses that spread using cross-site scripting were first reported in 2002,[88] and were academically demonstrated in 2005.[89] There have been multiple instances of the cross-site scripting viruses in the "wild", exploiting websites such as MySpace (with the Samy worm) and Yahoo!.

Examples of Microsoft Windows anti virus and anti-malware software include the optional Microsoft Security Essentials[96] (for Windows XP, Vista and Windows 7) for real-time protection, the Windows Malicious Software Removal Tool[97] (now included with Windows (Security) Updates on "Patch Tuesday", the second Tuesday of each month), and Windows Defender (an optional download in the case of Windows XP).[98] Additionally, several capable antivirus software programs are available for free download from the Internet (usually restricted to non-commercial use).[99] Some such free programs are almost as good as commercialcompetitors.[100] Common security vulnerabilities are assigned CVE IDs and listed in the US National Vulnerability Database. Secunia PSI[101] is an example of software, free for personal use, that will check a PC for vulnerable out-of-date software, and attempt to update it. Ransomware and phishing scam alerts appear as press releases on the Internet Crime Complaint Center noticeboard. Ransomware is a virus that posts a message on the user's screen saying that the screen or system will remain locked or unusable until a ransom payment is made. Phishing is a deception in which the malicious individual pretends to be a friend, computer security expert, or other benevolent individual, with the goal of convincing the targeted individual to reveal passwords or other personal information. be457b7860

1987 Philippine Constitution Comprehensive Reviewer Pdf Freegolkesl

accountingrulesfortreasuries1992pdf

BitshareMotionstudiosVascoDaGama7HdProKey

Mega Man X full movie kickass torrent

Sb0100 Driver Windows 10