Demand for teleoperation systems is increasing due to the emergence of pandemic which essentially changed the social behavior and work pattern in daily life. Physical interactions and contacts between humans are discouraged and digitalization of interactions towards remote or online interactions is accelerated. Teleoperation system is therefore, getting more attention and interest, where the applications range from telepresence systems1 in the convenience stores, to teleoperation systems at workplaces, such as teleoperation of heavy machineries at construction sites2,3,4 or industrial vehicles at warehouses5,6. However, transition from physical or manned operation to teleoperation is not easy because of issues such as implementation cost, safety, and usability of new teleoperation systems. This usability is typically dependent on the visual stimuli shown on the displays of Human Machine Interface (HMI). In case of teleoperation HMI for heavy machineries such as cranes2,3,4, the recommended visual stimuli usually cover a relatively small working area around the machine itself. Thus, views from an overhead camera covering this working area are consistently recognized as the optimal visual stimuli to facilitate teleoperation of cranes. However, these visual stimuli may not be suitable for different applications which may have different operation characteristics. For example, some applications require multiple tasks such as driving and handling of load. Thus, the attention of operators may need to have multiple perspectives.

From this section onwards, the method of computing the optimal visual stimuli Y1, Y2, and Y3 for HMI elements is elaborated. The adaptability of the HMI is supported by the ability of the system to recognize basic work states of forklift operation. In this case, the operation task defined in Fig. 2 is segmented into 14 basic work states which are typical of any forklift operations (see Fig. 6 which illustrates a cycle of basic work states). This approach is adapted from the preceding study8 which recognizes 6 basic work states. In the current study, the model is expanded to recognize 14 basic work states, thus enabling the model to recognize typical forklift work using higher resolution.




Creating Human Machine Interfaces Using Visual Basic Pdf