Accepted papers

Poster Session I (13:15 - 14:00)

Causal Proxy Models for Concept-Based Model Explanations

Zhengxuan Wu, Karel D'Oosterlinck, Atticus Geiger, Amir Zur, Christopher Potts

Counterfactual Memorization in Neural Language Models

Chiyuan Zhang, Daphne Ippolito, Katherine Lee, Matthew Jagielski, Florian Tramer, Nicholas Carlini

Counterfactual Generation with Identifiability Guarantees

hanqi yan, Lingjing Kong, Lin Gui, Yuejie Chi, Eric Xing, Yulan He, Kun Zhang

Bayesian Predictive Synthetic Control Methods

Akira Fukuda, Masahiro Kato, Kenichiro McAlinn, Kosaku Takanashi

Why Don’t We Focus on Episodic Future Reasoning, Not Only Counterfactual?

Dongsu Lee, Minhae Kwon

Identification of Nonlinear Latent Hierarchical Causal Models

Lingjing Kong, Biwei Huang, Feng Xie, Eric Xing, Yuejie Chi, Kun Zhang

Counterfactuals for the Future

Lucius E.J. Bynum, Joshua Loftus, Julia Stoyanovich

Causal Dependence Plots

Joshua Loftus, Lucius E.J. Bynum, Sakina Hansen

Empowering Counterfactual Reasoning for Graph Neural Networks via Inductivity

Samidha Verma, Burouj Armgaan, Sourav Medya, Sayan Ranu

Interventional and Counterfactual Inference with Diffusion Models

Patrick Chao, Patrick Blöbaum, Shiva Kasiviswanathan

Advancing Counterfactual Inference through Quantile Regression

Shaoan Xie, Biwei Huang, Bin Gu, Tongliang Liu, Kun Zhang

Poster Session II (15:15 - 16:00)

Delphic Offline Reinforcement Learning under Nonidentifiable Hidden Confounding

Alizée Pace, Hugo Yèche, Bernhard Schölkopf, Gunnar Ratsch, Tennenholtz Guy

Adaptive Principal Component Regression with Applications to Panel Data

Anish Agarwal, Keegan Harris, Justin Whitehouse, Steven Wu

Natural Counterfactuals With Necessary Backtracking

Guang-Yuan Hao, Jiji Zhang, Hao Wang, Kun Zhang

Strategyproof Decision-Making in Panel Data Settings and Beyond

Keegan Harris, Anish Agarwal, Chara Podimata, Steven Wu

Learning Linear Causal Representations from Interventions under General Nonlinear Mixing

Simon Buchholz, Goutham Rajendran, Elan Rosenfeld, Bryon Aragam, Bernhard Schölkopf, Pradeep Ravikumar

Counterfactual Explanation Policies in RL

Shripad V Deshmukh, Srivatsan R, Supriti Vijay, Jayakumar Subramanian, Chirag Agarwal

Budgeting Counterfactual for Offline RL

Yao Liu, Pratik Chaudhari, Rasool Fakoor

Counterfactual Learning to Rank via Knowledge Distillation

Ehsan Ebrahimzadeh, Alex Cozzi, Abraham Bagherjeiran

Unveiling the Betrayal of Counterfactual Explanations within Recommender Systems

Ziheng Chen, Jin Huang, Ping Chang Lee, Fabrizio Silvestri, Hongshik Ahn, Jia  Wang, Yongfeng Zhang, Gabriele Tolomei

Counterfactually Comparing Abstaining Classifiers

Yo Joong Choe, Aditya Gangrade, Aaditya Ramdas

Forward-INF : Efficient Data Influence Estimation with Duality-based Counterfactual Analysis

Myeongseob Ko, Feiyang Kang, Weiyan Shi, Ming Jin, Zhou Yu, Ruoxi Jia

Leveraging Factored Action Spaces for Off-Policy Evaluation

Aaman P Rebello, Shengpu Tang, Jenna Wiens, Sonali Parbhoo

A special thanks to our reviewers!

Sander Beckers

Andrew Forney

Thomas Icard

Emre Kiciman

Ciaran Gilligan-Lee

Fredrik Johansson

Lucius Bynum

Paul Henne

Joshua Loftus

Atticus Geiger

Kevin O'Neill

Tadeg Quillien

Athanasios Vlontzos

Jonathan Kominsky

Nick Pawlowski

Ricardo Silva

Michael Oberst

For questions, please contact us at counterfactuals.icml@gmail.com