Developing

ADVANCED COMPUTATIONAL MODELS

& BRAIN-COMPUTER INTERFACES

for Real-Life Applications






Independent component ensemble of EEG for brain-computer interface

Successful applications of independent component analysis (ICA) to electroencephalographic (EEG) signals have yielded tremendous insights into brain processes that underlie human cognition. Many studies have further established the feasibility of using independent processes to elucidate human cognitive states. However, various technical problems arise in the building of an on-line Brain-Computer Interface (BCI). These include the lack of an automatic procedure for selecting independent components of interest (ICi) and the potential risk of not obtaining a desired ICi. Therefore, this study proposes an ICi-ensemble method that uses multiple classifiers with ICA processing to improve upon existing algorithms.

IEEE Transactions on Neural Systems and Rehabilitation Engineering 2014 [full article]

Wireless and wearable EEG system for evaluating driver vigilance

This work presents a novel dry EEG sensor based mobile wireless EEG system (referred to herein as Mindo) to monitor in real time a driver's vigilance status in order to link the fluctuation of driving performance with changes in brain activities. The proposed Mindo system incorporates the use of a wireless and wearable EEG device to record EEG signals from hairy regions of the driver conveniently. Additionally, the proposed system can process EEG recordings and translate them into the vigilance level. The study compares the system performance between different regression models. Moreover, the proposed system is implemented using JAVA programming language as a mobile application for online analysis.

Demo-drowsy.mp4

IEEE Transactions on Biomedical Circuits and Systems 2014 [full article]

Minority oversampling in kernel adaptive subspaces for class imbalanced datasets

The class imbalance problem in machine learning occurs when certain classes are underrepresented relative to the others, leading to a learning bias toward the majority classes. To cope with the skewed class distribution, many learning methods featuring minority oversampling have been proposed, which are proved to be effective. To reduce information loss during feature space projection, this study proposes a novel oversampling algorithm, named minority oversampling in kernel adaptive subspaces (MOKAS), which exploits the invariant feature extraction capability of a kernel version of the adaptive subspace self-organizing maps.

IEEE Transactions on Knowledge and Data Engineering 2017 [full article]