高等近世代数
2022-2023-2
2022-2023-2
开课学期:2022-2023春学期
课程号:sd00930180
学分:3 课时:54
上课地点:中心数学北楼204 上课时间:周五05-07
考核方式:包括平时作业、期末考试(笔试、闭卷)
本课程面向具有大学抽象代数基础的研究生,在假设学生已掌握群、环、域等基本抽象代数知识的基础上,主要介绍域上的结合代数、同调代数、Galois 理论、代数数论、代数几何、有限群表示论、李群李代数等方面的基本知识。本课程旨在介绍当今数学工作者所需具备的基本代数概念和工具,给学生提供代数理论、应用,以及在数学中所处地位的全局概貌,为将来从事数学工作打下代数基础。
David S. Dummit and Richard M. Foote, Abstract Algebra. Third edition.
John Wiley & Sons, Inc., Hoboken, NJ, 2004. xii+932 pp.
ISBN: 0-471-43334-9.
Michael Artin, Algebra. Second edition.
Pearson Education, Inc., Upper Saddle River, NJ, 2010. xv+543 pp.
ISBN: 978-0-1324-1377-0.
聂灵沼,丁石孙,《代数学引论(第三版)》.
高等教育出版社,2021. 面向 21 世纪课程教材. 360 pp.
ISBN: 978-7-04-055290-4.
欧阳毅,《代数学III,代数学进阶》.
高等教育出版社,2019. 中国科学技术大学数学丛书. 163 pp.
ISBN: 978-7-04-052753-7.
Robert B. Ash, Basic abstract algebra. For graduate students and advanced undergraduates.
Dover Publications, Inc., Mineola, NY, 2007. xiv+407 pp.
ISBN: 0-486-45356-1.
Brian Hall, Lie groups, Lie algebras, and representations. An elementary introduction. Second edition. Graduate Texts in Mathematics, 222.
Springer, Cham, 2015. xiv+449 pp.
ISBN: 978-3-319-13466-6.
Anthony W. Knapp, Basic algebra.
Birkhäuser Boston, Inc., Boston, MA, 2006. xxiv+717 pp.
ISBN: 978-0-8176-3248-9.
Anthony W. Knapp, Advanced algebra.
Birkhäuser Boston, Inc., Boston, MA, 2007. xxiv+730 pp.
ISBN: 978-0-8176-4522-9.
02/24 Multilinear Algebra (Dummit §10.4 §11.2 §11.5) [Lecture01.pdf]
03/03 Multilinear Algebra (continued), Group Actions (Dummit Chap. 4) [Lecture02.pdf]
03/10 Group Actions (continued)
03/17 Modules (Dummit Chap. 10) [Lecture03.pdf]
03/24 Modules (continued)
03/31 Homological Algebra 1 (Dummit §10.5) [Lecture04.pdf]
04/07 Modules over Principal Ideal Domains (Dummit Chap. 12) [Lecture05.pdf]
04/14 Field Theory (Dummit Chap. 13) [Lecture06.pdf]
04/21 Field Theory (continued) [Lecture07.pdf]
04/28 Galois Theory (Dummit Chap. 14) [Lecture08.pdf]
05/05 Galois Theory (continued)
05/12 Commutative Algebra (Dummit §15.3 §15.4) [Lecture09.pdf]
05/19 Algebraic Geometry (Dummit Chap. 15) [Lecture10.pdf]
05/26 Homological Algebra 2 (Dummit Chap. 17) [Lecture11.pdf]
06/02 Representation Theory (Dummit Chap. 18) [Lecture12.pdf]
06/09 Matrix Groups (Artin Chap. 9) [Lecture13.pdf]
06/16 Final Exam []