01/06 Lecture 1. Commutativity of abelian varieties.
01/09 Lecture 2. Rational maps.
01/11 Lecture 3. Theorem of the cube: preparations.
01/13 Lecture 4. Theorem of the cube: proof.
01/18 Lecture 5. Theorem of the square.
01/20 Lecture 6. Projectivity.
01/23 Lecture 7. Isogenies.
01/25 Lecture 8. Group schemes: definitions.
01/27 Lecture 9. Cartier duality.
01/30 Lecture 10. Quotients by finite group schemes: affine case.
02/01 Lecture 11. Quotients by finite group schemes: global case.
02/03 Lecture 12. The dual abelian variety.
02/06 Lecture 13. The Poincare bundle.
02/08 Lecture 14. Nondegenerate line bundles.
02/10 Lecture 15. Very ample line bundles.
02/13 Lecture 16. Abelian varieties over C: complex tori.
02/15 Lecture 17. Abelian varieties over C: line bundles.
02/20 Lecture 18. Abelian varieties over C: chern classes.
02/22 Lecture 19. Abelian varieties over C: the Appell-Humbert theorem.
02/24 Lecture 20. Abelian varieties over C: polarizations.
02/27 Lecture 21. Abelian varieties over C: polarization type.
03/03 Lecture 23. Étale covers.
03/13 Lecture 24. The Tate module.
03/15 Lecture 25. The isogeny category.
03/17 Lecture 26. The characteristic polynomial of the l-adic representation.
03/20 Lecture 27. Symmetric endomorphisms.
03/22 Lecture 28. The Rosati involution.
03/24 Lecture 29. Endomorphism algebras in characteristic 0.
03/27 Lecture 30. The Weil pairing.
03/29 Lecture 31. Abelian varieties over finite fields: endomorphisms.
03/31 Lecture 32. Abelian varieties over finite fields: Weil conjectures I.
04/03 Lecture 33. Abelian varieties over finite fields: Weil conjectures II.
04/05 Lecture 34. Theta groups.
04/07 Lecture 35. Descent along isogenies.
04/10 Lecture 36. Theta groups over C.
04/12 Lecture 37. Chow groups.
04/14 Lecture 38. K groups.
04/19 Lecture 39. The Fourier transform.
04/21-24 Lecture 40. The decomposition of the diagonal.